

Approved for Release: 2017/08/17 C05100033
SECRET

Prepared by
SATELLITE SYSTEMS SUBSYSTEM F DEVELOPMENT
62.33

SATELLITE SYSTEMS SAMOS PROGRAM
(1)EnTin..!

APPROVED:

DJ. GRIBBON SATELLITE SYSTEMS MANAGER
anirlipeis rept.

APPROVED:
W. V. Ty
W. V. TYKINSKI

SAMOS PROGRAM MANAGER

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws. Title IV, U. S. C.. Sec. 793 and 794. It transmission or the revelation of its contents in on mamet an uncuthghed person is prohibited by log

 ${ }^{6}$ GMrat?

FOREWORD

The two volumes of this report analyze the Ferret 2 (F 2) system of Subsystem F Cor Samos satellites. The report was prepared by Lockheed Missiles and Space Division in accordance with Contract AF 04(647)-563. Volume I (Sections 1 - 4) gives a general description of Subsystem F and analyzes payload and checkout equipment. Volume II (Sections 5-9) analyzes the ground data-handling system, on-orbit calibration equipment, field-support program, system engineering, and reliability.

equipment controls the engineering functions of monitoring, calibration, and on=orbit adjustment of the payload.

Before the ferret payload lifts from the lanch pad atop the Samos vehicle, the payload equipment is subjected to an extensive checkout on the ground. Components and subsystems within the payload are checked and tested to assure that the ferret system will work properly during orbital flight.

Also, before the ferret payload is ready for launching, personnel who will operate, maintain, and check out Subsystem F equipment are trained in their respective tasks. Adequate training guarantees capable operation and maintenance of equipment.

The F-2 System design program is augmented by several studies which provide mathematical and technical analyses in critical areas affecting system development and operation. These areas include readout, calibrationfrequency, effects of satellite tilt, orbital structurefor $\mathcal{F}-2$ satellites, offfrequency detection, spurious emissions, inhibit clogging, terrain reflections, strong signals, minimum detectable signals, and location accuracy of the F-2 system.

The reliability of the $F-2$ payload is discussed in the last section of the report. Equipment reliability, which emulates calculated predictions of reliability whenever possible, is ensured through a thorough program of evaluation. This program calls for a review of all designs, testing components, establishing standards and application criteria, and analyzing malfunctions. Parts and materials are also tested to determine whether they will withstand their operational environment for extended periods of time.

CONTENTS

		Page
FOREWORD		iii
SUMMARY		\checkmark
ILLUSTRATIONS		ix
TABLES		xiii
SECTION 1	GENERAL DESCRIPTION OF SUBSYSTEM F	1-1
1.1 c	General Characteristics	1-1
1.2	Parameter-Measurement Data	1-5
1.3 S	Signal Location	1-6
1.4	F-2 Models	1-8
1.5	Performance Characteristics of $\mathrm{F}-2$ (Flights 1 and 2) Payload	1-8
1.6	Performance Characteristics of F-2 (Flights 3 and 4) Paylod	1-9
SECTION 2	FERRET 2 (FLIGHTS 1 and 2) PAYLOAD EQUIPMENT	2-1
2.1 A	Antennas	2-1
2.2 P	Receivers	2-10
2.3 P	Payload Data Handler	2-36
2.4 T	Tape Recorder	2-47
2.5	Payload Control Equipment	2-52
2.6	Weight and Power Summaries	2-83
SECTION 3	FERRET 2 (FLIGHTS 3 and 4) PAYLOAD EQUIPMENT	3-1
3.1 A	Antennas	3-1
3.2 P	Receivers	3-3
3.3 P	Payload Data Handler	3-15
3.4 D	Data Storage	3-32
3.5 P	Payload Control Equipment	3-32
LOCKHEED AIRCRAFT	corporation SECPE M	PACE DIVISION

		Page
SECTION 4	PAYLOAD CHECKOUT EQUIPMENT	4-1
4.1	General Information	4-1
4.2	Description of Block : Diagram	4-4
4.3	Master Control Unit.	4-8
4.4	Monitor Unit	4-13
4.5	Manual Test Unit	4-29
4.6	Command Indicator Panel	4-31
4.7	Signal Generators	4-31
4.3	Dynamic Test Control Unit (DTCU)	4-33
4.9	Manual Calibration of Signal Generators	4-46
4.10	Band Mode Selection	4-46
4.11	Preamplifier Gain Adjustment	4-47
4.12	Dynamic Test Sequence	4-48
4.13	Modulators for Bands 1 and 2	4-4.9
4.14	Band 1 Signal Source Unit	4-52
4.15	Band 2 Signa! Source Unit	4-55
4.16	Signal Source and Modulator for Bands $3 b$ and $3 c$	4-55
4.17	Antenna Adapters	4-58
4.18	F-2 Test Bax and Dummy Load Unit	4-60
4.19	Checkout Data Handler	4-69
4.20	Junction Box	4-83

LOCKHEED AIRCRAFT CORPORATION

MISSILES and SPACE OIVISION

ILLUSTRATIONS (Continued)

ILLUSTRATIONS (Continued)

Figure		Page
3-5	Schematic Diagram of Band 3b Local Oscillator	3-8
3-6	Schematic Diagram of Band 3c Local Oscillator	3-8
3-7	Schematic Diagram of Band 3b Mixer	3-9
3-8	Schematic Diagram of Band 3c Mixer	3-9
3-9	Schematic Diagram of Log I-F Strip for $\mathrm{F}-2$ (Flights 3 and 4) Receivers	3-10
3-10	Characteristics of Notch Filter	3-11
3-11	Schematic Diagram of $\mathrm{F}-2$ (Flights 3 and 4) Amplitude Comparator	3-14
3-12	Block Diagram of $F-2$ (Flights 3 and 4) Payload Data Handler	3-17
3-13	F-2 (Flights 3 and 4) Digital Data Format	3-18
3-14	Logic Diagram: Verification, PRF, and PW	3-19
3-15	Logic Diagram: Complement Counter (Nonuniform PRF)	3-20
3-16	Timing Diagram of Complement Counter	3-21
3-17	Logic Diagram: Frequency and Time	3-22
3-18	Logic Diagram: Pulse Amplitude and Amplitude Difference	3-23
3-19	Logic Diagram for Single-Frequency Sequential Pulse Detector	3-24
3-20	Logic Diagram: Data Sampler and Reset Control	3-25
3-21	Logic Diagram: Controis for Recorders	3-26
3-22	Schematic Diagram of $2-\mathrm{Mc}$ and 31.25-kc Oscillators	3-30
3-23	Intercept Timing Diagram (For Bands Using Verification)	3-33
3-24	Functional Block Diagram of $E-2$ (Flights 3 and 4) Test Signal Generator	3-37
3-25	Block Diagram of Internal Programmer	3-30
3-26	Block Diagram of Redundant Band Switching Unit	3-40

ILLUSTRATIONS (Continued)

Figure		Page
4-1	F-2 Checkout Equipment	4-3
4-2	Block Diagram of F-2 Checkout Equipment	4-5
4-3	Digital Record Print Format for $\mathrm{F}-2$ Checkout	4-6
4-4	Block Diagram of Master Control Unit	4-9
4-5	Schernatic Diagram of $\mathrm{F}=2$ Monitor Unit	4-15
$4-6$	Schematic Diagram of the Manual Test Unit	4-30
4-7	Command Indicator Panel	4-32
4-8	Functional Block Diagram of $\mathbf{F - 2}$ Signal Generators	4-34
4-9	Schematic Diagram of DTCU	4-35
4-10	Block Diagram of Modulator Unit	4-50
4-11	Schematic Diagram of Band 1 Signal Source	4-54
t-12	Schematic Diagram of Band 2 Signal Source	4-56
4-13	Block Diagram of RE Section of Bands 3b and 3 c Signal Source	4-57
4-14	Block Diagram of Band 1 Antenna Adapter	4-59
4-15	Block Diagram of Band 2 Antenna Adapter	4-61
4-16	Block Diagram of Band 2 Antenna and Alapter Assembly	4-62
$4-17$	Test Box and Dummy Load	4-63
4-18	Panel of Test Box	4-64
4-19	Block Diagram of Tape Simulator	4-67
4-20	Waveforms of Tape Simulator	4-68
4-21	Block Diagram of Data Handler Unit	4-71
4-22	Timing Diagram of Typical Word	4-78
4-23	Timing Diagram of First Word	4-82

TABLES

Table		Page
1-1	Frequency Bands	1-3
2-1	I-F Amplifier Band-Pass Characteristics for F-2 (Flights 1 and 2)	2-31
2-2	Band 2 Power Supply Characteristics	2-33
2-3	Modes of Operation of $\mathrm{F}-2$ (Flights 1 and 2) Ferret Equiprnent	2-56
2-4	Stored Program Commands for F-2 (Flights 1 and 2)	2-59
2-5	Real-Time Commands for F-2 (Flights 1 and 2)	2-61
2-6	Monitoring Points	2-74
2-7	Receiver Scan Characteristics for $\mathbf{F - 2}$ (Flights 1 and 2) System	2-82
2-8	Peak Power Requirements for $F-2$ (Flights 1 and 2) Payload Equipment	2-86
2-9	Estimated Weights and Volumes of $\mathrm{F}-2$ (Flights 1 and 2) Payload Equipments	2-86
3-1	Receiver Scan Characteristics for $\mathrm{F}-2$ (Flights 3 and 4) Systern	3-5
3-2	Bandwidth Characteristics of I-F Filters for $\mathrm{F}-2$ (Flights 3 and 4) Bands 1 , $3 b$ and $3 c$	3-12
3-3	Characteristics of 60-Mc I-F Preamplifiers	3-12
3-4	Characteristics of 60-Mc LOGI-F Amplifiers	3-13
3-5	Readout Accuracy or Complement Counter with 40-kc T. Clock	3-28
3-6	Proposed Stored Program Commands for F-2 (Flights 3 and 4) Payloads	3-35
3-7	Proposed Real Time Commands for F-2 (Flights 3 and 4) Payloads	3-36
3-8	Receiver Control Code for $5-2$ (Flights 3 and 4) Receivers	3-42

SECRET

TABLES (Continued)

Table		Page
4-1	Static Test Program for F-2 Checkout	4-18
4-2	Dynamic Test Program for Band 1 of $\mathbf{F - 2}$ (Filghts 1 and 2)	4-37
4-3	Dynamic Test Program for Band 2 of $\mathrm{F}-2$ (Fights 1 and 2)	4-39
4-4	Description of Scans for Dynamic Test Program	4-42
4-5	Chart of Intercepts	4-53

SECTION 1 GENERAL DESCRIPTION OF SUBSYSTEM F

1. 1 GENERAL CHARACTERISTICS

Subsystem F is an electronic reconnaissance subsystem of spaceborne equipment that collects intelligence information from radiations in the 30 to 300 , 000 Mc range. The equipment processes and stores the intercept information in coded form and, at the proper time, reconverts the stored information into a form suitable for transmission to the ground. Subsystem F ground data handling equipment receives the ferret data from the satellite, via the Communications and Control (C\&C) Subsystem, processes it for transmission to the user (Subsystem I), and handles the engineering func tions (such as monitoring, calibration, and on-orbit adjustment) required for proper operation of the payload equipment. Subsystem calitration vans transmit known signals from locations at specified times to the ferret equipment for on-orbit calibration of the reconnaissance system. Subsystem F ground support equipment provides the preflight checkouts of the spaceborne equipment. Subsystem E consists of the following equipment: (a) spaceborne ferret, (b) groundmbased data handling, (c) groundbased calibration, and (d) ground-based checkout.

Eigure l-1 is an overall block diagram of Subsystem E. A frequencyscanning superheterodyne intercept eeceiving system is used because of its superior sensitivity, frequency selectivity, adaptability to advanced systems, and relatively low power requirements. The frequency range is divided into 19 receiver bands (Table 1-1). Each model of Subsystem F contains receivers that cover selected frequency bands. The Ferret $2(F-2)$ System contains receivers for bands $1,2,3 b$, and $3 c$. For each band, a two $=$ channel receiver is used. One channel is connected to a "signal" antenna, and the other channel is connected to an "inhibit" antenna. The antenna patterns of the two channels are such that within a cone having an apex angle of

LMSD-447423

4474231-001

FREQUENCY BANDS

Frequency Band (Mc)

30 to 59
59 to 130
130 to 290
290 to 650
650 to 1300
1300 to 2500
2500 to 3200
3200 to 5130
5130 to 8200

Priority Number
10
$3 a$
$3 b$
$3 c$
4
6
1
5
7

Frequency Band (kmc)	Priority Number
8.2 to 12.4	8
9 to 10	2
12.4 to 18	9
18 to 27	11
27 to 40	12
40 to 60	13
60 to 90	14
90 to 135	15
135 to 200	16
200 to 300	17

about 32 degrees centered at the nadir of the satellite, the gain of the signal channel is higher than that of the inhibit channel. For all directions outside this cone, the inhibit-channel gain is greater than the signai-channel gain. By directing these two received signals into an amplitude comparator, it is possible to reject all signals that come from a direction outside the 32 degrec coverage cone, and to pass to the data handing circuits only the signals from emitters lying within the coverage cone.

The data handling carcuits in the payload measure parameters of the received signals, store desiredinformation, reject some redundant information, and at the proper time reconvert the stored signals into a form suitable for transmission by the communications and control system.

Digital techniques provide sufficient flexibility to minimize the redesign that might be needed to handle different types of information in later missions. They lend themselves to extremely reliable design, since moderate changes in component characteristics need not affect the validity of the data system

output. They are well suited for selecting desired information, and for temporary storage and transmission of extracted data.

It is necessary to program the intercept receivers and data handing circuits so that (a) the desired intelligence information is intercepted and processed, (b) the payload equipment is monitored and calibrated to keep apprised of the reliability of the intercepted data as processed, (c) defective components are detected, and adjusted or replaced, and (d) the intercept equipment reads out information to and accepts commands from an authorized interrogation station only. These four functions are performed by the payload control system ir conjunction with the $C 8 C$ decoder and sequence programmer; the control system relays the decoded and processed instructions to the designated units Coded ferret information received at the ground station will be decoded and technically processed by the ground data handling equipment. This equipment, which is part of the ground-based satellite control equipment, has two general functions: a technical processing function and a technical supervision function. It processes, corrects, and assembles data quickly, accurately, and in a form suitable for the user (Subsystem I). It processes test data, calibration data, and other data from the payload and from various Subsystem F ground installations to ensure proper technical operation of the ferret equipment. It permits the establishing of data-correction factors, and it permits complete and adequate monitoring of all aspects of equipment performance. On-orbit payload equipment adjustments for technical or operational reasons are also part of its function.

The ground-based satellite control equipment also includes the on-orbit calibration equipment. For on-orbit calibration it is necessary to transmit radar signals whose frequencies, PRF, and PW are accurately known. Knowledge of the operational status of the satellite-borne equipment is obtained by comparing the intercepted calibration data as retransmitted from the satellite to the control center with the data originally transmitted. The ferret equipment will intercept calibration transmissions only when the calibration station is being illuminated by the Subsystem F signal antennas.

Gencrally, the satellite will pass directly over a station within the United States only once or twice a week. A calibration van will be located at each tracking and acquisition station (TAS).

The ground support program provides equipment needed for preflight checkout of the ferret equipment. The checkout equipment provides an overall system test by injecting accurately calibrated simulated radar signais to test all components of the ferret system.

1. 2 PARAMETER-MEASUREMENT DATA

When a signal is accepted as a valid intercept by the ferret receivers, data handling circuits extract the desired information from the received pulses and store the information in digital form for future transmission to the ground. The signal parameters that are measured and stored in all $E-2$ models are frequency, $P R E$ (measured as pulse intervals), PW, and time-of-intercept. In one of the $\mathrm{F}-2$ models, nonuniforr $P R F$, pulse amplitude, amplitude difference, single pulses, long pulses, and sequential pulses are measured (or detected) also.

The scan rates of the ferret receivers are slow enough to provide sufficient time in each channel for interception of at least three pulses at the lowest expected PRF. Therefore, two PRF measurements can be obtained for each signal. If only one radar signal is intercepted per frequency channel, then the PRF measurement is usually constant from pulse to pulse. If two or more signals are intercepted in one channel, however, the measured PRF will almost always have two different values for two consecutive intervals. In this case, additional correlation is needed to identify the radars, but the possibility that two or more may be present will be known. The PRF measurements are a better indication of the number of emitters than the PW measurements; the same PW could be used by a number of radars at a given frequency, but it is unlikely that more than one radar would have the same PRF. The bands are scanned serially from the lowest to the highest frequency. Each receiver is operational only during its scan period.

LOCKMEED AIRCRAFT CORPORATION

During the off period of each receiver, the scan mechanism returns to the initial setting.

1. 3 SIGNAL LOCATION

The apparent location of an emitter depends upon the location and attitude of the satellite at the time-of-intercept and on the radiation patterns of the intercept antennas. The position of the satellite is measured by another subsystem. The altitude information is receivec, converted into digital form, and formed into a digital word once each scan cycle.

In the cone whose apex is 32 degrees centered at the satellite's nadir, the gain of the signal antenna is, ideally, greater than that of the inhibit antenna; in the remainder of the area beneath the satellite, the gain of the inhibit antenna is greater. Thus, the signal antenna intercepts an on-theground circle with a diameter of about 172 nautical miles if the satellite is at an altitude of 300 nm . By comparing the amplitudes of the same signal from the two antennas, the location of the signal's emitter is determined to be either inside or outside the signal channel's cone of coverage. The emitter is located more accurately by choice of the frequency-scan time. The method of this accurate location is described in the following paragraph.

Assume a hypothetical airborne reconnaissance satellite that has a ground speed of 3.80 miles per second, that intercepts emitters within a circle having a diameter of 172 miles, and that scans all frequency bands at least once every 22.6 seconds. During one 22.6 -second frequency scan the satellite travels about 86 miles. If on two successive scans the same signal is intercepted, the apparent location of its emitter is known more accurately (Figure $1-2$). In the direction of motion the emitter is located with an error not greater than 43 miles; its location in a transverse direction may have an error of 74 miles. (If the signal is intercepted only once, its locational error ranges up to 86 miles.) With a faster scan time- -15 seconds, for example--the number ff times that a single emitter will be intercepted during one orbit will be increased. If a radar is intercepted on three successive scans, its location in the direction of motion will be

MISSILES and SFACE DIVISION
determined within 29 miles and its location in the transverse directions will be determmed within 04 miles.

Another method of increasing the accuracy of emitter location requires the measurement of pulse amplitude to help determine that portion of the antenna coverage pattern in which the signal was intercepted.

If ss clear that the accuracy of emitter location is affected by the ferret antenna radiation paticrns, by the height, velocity, and orbital stability of the satellite, and by the scan time of the ferret receivers. Only when all of these parameters are known can the accuracy of probable location on a single pass be determaned. More accurate location depend on use of overlap arcas in adjacent swaths. As intercept data accumulate, the locational accu* racy of each emulter whll increase.

$1.4 F-2$ MODELS

The F-2 natelife-borne equipment has two submodels: $E-2$ (flights 1 and 2) and $F-2$ (flights 3 and 4). The $F-2$ (fits 1,2) equipment contains receivers for bands 1 and 2. The band 3a antenna is included in the antenna array. Thas antonna, however, is not presently used by Subsystem E. The $\mathbb{F}-2$ (flis 3, 4) payload contains receivers for bands 1, 3b, and 3c. The checkout and g_{r} ound data handling equipment are primarily for the $\left.\mathbf{E}-2(f 1 t s), 2\right)$ model. Mudifications or additions will be made so that the equipment can serve both $F-2$ models when the $F-2$ (flts 3 , 4) payloads are ready for use.

1.5 PERFORMANCE CHARACTERISTICS OF F-2 (FLIGHTS I AND 2) PAYLOAD

Frequency Coserage

Scan Time

Cycle Time (2 bands)
PRF Measurement

Band 1: 2500 to 3200 Mc Band 2: 9000 to $10,000 \mathrm{Mc}$

Band 1: 6.6 seconds Band 2: 4.8 seconds
13.5 seconds

125 to $25,000 \mathrm{pps}$

Scan Time	Band 1: 4. 2 seconds Band 3b: 2.4 seconds Band 3r: 5.4 seconds
Cycle Time (3 bands)	13.8 seconds
PRF Measurement	Band 1: 200 to $20,000 \mathrm{pps}$ Bands 3 b and 3 c : 80 to $20,000 \mathrm{pps}$
PW Measurement	$1.0 \mu \mathrm{sec}$ to 2 millisec
Data Handler Resolution	$\pm 0.5 \mu \mathrm{sec}$ below $32 \mu \mathrm{sec}$ $+32 \mu \mathrm{sec}$ above $50 \mu \mathrm{sec}$ $\pm 16 \mu \mathrm{sec}$ between 32 and $50 \mu \mathrm{sec}$
Signal-Antenna Gain	```Band 1: 10 to 15 db within coverage circle Bands 3b and 3c: 0 db within cover- age circle```
Receiver Sensitivity	-80 dbm
Receiver Noise Figure	Band 1: 14 db (measured) Bands 3b and 3c: 12 db (calculated)
I-F Bandwidth	
All Bands	Signal channel: $2.5 \pm 0.2 \mathrm{Mc}$ Inhibit channel: approximately 8 Mc (bandwidth of log IF channel)
Dynamic Range of Receiver	
Input	60 db
Output	20 db
Ground Area Coverage (for 90 percent triggering)	
Band 1	Circle coverage, 172 nm diameter (nominal)
Band 3b	Swath coverage size to be determined
Band 3c	Circle coverage, 300 nm diameter
Maximum Intercept Recording Rate	66 per second (maximum capability of data handler)
Start-Stop Intervals	5 millisec for each (nominal)

[^0]

Record Intervals	6.8 millisec
Bit Length	
\quad Tape Readout	$100 \pm 20 \mu \mathrm{sec}$
\quad Direct Readout	$100 \pm 2 \mu \mathrm{sec}$
Intercept Word Length	68 bits
\quad Time Interval, Tape Readout	$6.8 \pm 1.0 \mathrm{millisec}$
Time Interval, Direct Readout	$6.8 \pm 0.14 \mathrm{millisec}$
\quad Spare Bits	7
Maximum Number of Intercepts	7500 words or more
Before Tape Readout	
Intercept Data	Same as for F-2 (flts l, 2) plus pulse
	amplitude, pulse amplitude difference,
	alarm bit for nonuniforre PRF, single frequency sequential, and long pulse
Maximum Readout Time	100 ± 20 seconds

SECTION 2

FERRET 2 (FLIGHTS 1 and 2) PAYLOAD EQUIPMENT

2. 1 ANTENNAS

The F-2 (flts 1, 2) antennas are distinctly different from the F-1 antennas. The F-2 antenna systems provide three advantages: (a) extended frequency range with improved SWR over the range, (b) improved circular-polarization performance. and (c) considerably less bulk and weight for the band l cigar antenna, compared with the large F-l band 1 horn.

The antenna array for the $\mathrm{F}-2$ (flts 1, 2) payload equipment is shown in Figure 2-1. The band linhibit antenna is a crossed dipole (turnstile), as shown in Figure 2-2. The antenna is fed in phase quadrature by a coupler (Figure 2-3), to obtain circular polarization. The band 1 signal antenna consists of the same type of turnstile antenna, and has a cigar element added to increase the directivity and gain (Figure 2-4). Radiation patterns of the band 1 antennas are shown in Figure 2-5.

The band 2 signal antenna is an octagonal horn (Figure 2-6). Circular polarization is achieved by using a metal-probe phase shifter, and by running a $t w i s t e d$ waveguide from the standard X-band waveguide to the square wave. guide of the phaseshifting section. The octagonal horn provides lower sidelobe levels than does a square horn. The band 2 inhibit antenna (Figure 2-7) is an open-end waveguide with a square cross section and a circular ground plane about 0.75 inch from the end Its circular polarization is achieved by the use of a phase shifter similar to that used in the signal antenna and a twisted waveguide section dentical with that used in the signal antenna. A resistance card (cross-mode absorber) is included between the phase shifter and the twist section to maintain low ellipticity (good circular polarization) over the band. Radiation patterns of the band 2 antennas are shown in Figure 2-8.

LOCKHEED AIRGRAFT CORPORATION

Figure 2-1 Antenna Array for F-2 (Flts 1, 2) Payload

Figure 2-2 Band 1 Inhibit Antenna

Figure 2-3 Band 1 Antenna Coupler

Figure 2-4 Band 1 Signal Antenna

(A) 7423-4007

Figure 2-5 Radiation Patterns of Band 1 Antennas

Figure 2m7 Band 2 lnhibit Antenna

LOCXHEED AIRCRAFI CORPORATION

6452910090

Figure 2-8 Radtation Patterns of Band 2 Antemas

The band 3a dipole antenna is designed to operate in two modes to provide both signal and inhibit functions. The normal dipole mode (signal mode) is the sum mode, in which current flows in the same direction in both halves of the dipole. This mode provides the familiar figure eight radiation pattern. In the difference mode (inhibit mode) the current flows in opposite directions in the two halves and provides a null in the radiation pattern in a plane normal to the dipole at its midpoint. With a hybrid feed, the dipole can be operated in both modes at the same time. In such operation a bandwidth ratio somewhat greater than $2: 1$ is achieved. The dipole's length is such that the electrical length varies from about 0.5 to about 1 wavelength over the frequency band.

The band 1 signal antenna serves as a return path for the current in the low end of band 3a. For this reason the cigar is made about 0.25 wavelength long at the low frequency. The dipole antenna is insulated from the equipment, and fed wih coaxial feed lines cut in high-impedance lengths. To limit undesirable radiation from the ground structure (the payload), a pair of resonant (at mid-band) spokes are added in space quadrature. This antenna configuration provides only partial inhibit action.

Figure $2-9$ shows the band 3 a antenna in the operating position, with the band 1 cigar antenna mounted in the center. Space limitations dictate that the antenna will be folded for packaging as shown in Figure 2-10. The an. tenna will be erected after the payload is in orbit. In the E-2 (flts 1, 2) payload, the band 3a antenna is inoperable since there is no band 3a receiver. The re will be no RF connections to this antenna; it will serve as a structural support (during flight) for the band 1 antenna.

2. 2 RECEIVERS

Eigure $2-11$ is a block diagram of the superheterodyne receivers used in the F-2 (flts 1, 2) payloads. Each receiver has a signal channel and an inhibit channel. In general, the two channels differ in that the signal channel contains a preselector for image and spurious-response rejection, and the IF bandwidth of the signal channel is less than that of the inhibit channel, thus

Figure 2-10 Band 3a and Band 1 Antennas in Packaged Position

limiting acceptance to signals within the band of interest. A common local oscillator is used for both channels. Each band has a completely independent receiver, with its own front end, IF amplifier, and amplitude comparator. This straightforward receiver design makes the $F-2$ equipment adaptable to engineering changes and to a wide variety of tactical situations and substantially decreases the probability of total failure of all receivers.

As shown in Figure 2-11, the receiver unit for each band contains all the necessary equipment for passing a standard "accept" pulse and a PW pulse to the data handling circuits. Each payload will be capable of multiband operation. Because frequency bands are scanned serially rather than simultaneously, one limitation on the number of receivers that can be carried is the available scan time. Total scan time cannot exceed 23 seconds without seriously increasing the probability of overlooking an emitter. The scan time of any band is variable within limits that depend upon the minimum PRF that it is desired to intercept and the frequency resolution required. When the minimum PRF and the channel width have been established for a particular frequency band, the minimum scan time for that band is automatdcally established. All the receivers carried in one payload must have a total scan time of less than 23 seconds if the system is to be effective.

The receiver-introduced limitations on parameter measurements are dependent on the signal channel's IF bandwidth, and the receiver scanning rate. The IF bandwidth must be adequate to pass the minimum PW expected, but it must be kept within the limits set by receiver noise and signal resolution requirements. The scanning rate of the receiver is set so that during one scan at least three pulses can be received at minimum PRF. However, the scanning rate must be fast enough that the entire frequency band is cavered during the time that the payload's ground coverage circle moves one coverage radius. Increasing the number of times the same intercept is received (that is, increasing the scan rate) improves the locational accuracy.

The band 1 receiver is shown in Figure $2-12$ and the band 2 receiver in Figure 2-13. The receivers operate as follows. Signals from the signal and inhibit antennas are fed to their respective channels; there they are mixed,

Figure 2-12 Band 1 Receiver

Figure 2-13 Band 2 Receiver
amplified, detected, amplified further in a video amplifier, then fed to an amplitude comparator. The comparator determines from the relative amplitudes of the two signals whether or not the intercepted signal came from an emitter within the circle of coverage. If the emitter lies within the coverage circle, the amplitude comparator sends two pulses to the data handling circuits - the accept pulse and an amplitude-limited sample of the intercepted pulse. This sample is used for PW measurements.

The receiver threshold sensitivity is -80 dbm ; that is, a -80 dbm signal at the input terminals of the receiver will trigger the amplitude comparator 90 percent of the time if the false-alarm rate (noise signal) is less than one per second. The receiver dynamic range is nominally 60 db . Since preamplifier linearity is reduced for input power levels above -25 dbm , the actual dynamic range is limited to 55 db to ensure good amplitude tracking.

2.2.1 Preselector

The two principal ciesign objectives for the preselector are; (a) an image attenuation of at least 20 db , and (b) an insertion loss of less than 1.5 db . Since the preselector must track the local oscillator, the bandwidth of the preselector is made as wide as possible. Since there is no preselector in the inhibit channel, spurious signals from that channel are larger than those from the signal channel. The amplitude comparator recognizes this difference and inhibits the output of the receiver when such signals occur. Thus the combined actions of the inhibit channel and the comparator serve as a filter and discriminator against signals that lie outside the pass band of the receiver.

A two-cavity coaxial filter is used in band 1 . The preselector bandwidth is 30 Mc . When used with a $60-\mathrm{Mc}$ IF strip, this preselector provides image attenuation greater than 20 db . No preselector is used in band 2. The band 2 receiver will therefore have two responses, one 60 Mc above and the other 60 Mc below the local-oscillator frequency. Twice as many intercepts for vach emitter will be obtained as would be recorded if a preselector were used. However, the expected signal density in bapa 2 is sufficiently low

that doubling the intercept rate will not tax the receiver or data handing capacity. Advantages of omitting the preselector are improved receiver sensitivity and improved reliability.

2.2.2 Local Oscillators

The originally profosed 6299 triode oscillator for use in band 1 has been replaced with the $F-1$ klystron oscillator. Reliable power output distribution and frequency coverage were not obtained with the 6299 units. On this basis a new band loscillator program was initiated. The firststep of this program was to effect an immediate solution to the problem by the substitution of the proven $F-1$ local oscillator into the $F-2$ (flts 1, 2) equipment. Several voltage-tunable devices were considexed, and the development of a new tride oscillator using either a GE 6771 or a GE 6442 tube type was subcontracted to ACF Industries. Since the klystron oscillator is proving to be satisfactory, the development program for other oscillators has been discontinued.

In band 2 a VAl61 BWO is used, which requires 15 watts of input power at relatively low voltages. This $B W O$ is a rugged unit of ceramir in integral magnetic construction. It is electronically tunable over the required frequency range, and its operating frequency setting is afficiently insensitive to load changes.

2.2.3 Mixers

Because of crystal nonlinearity, any crystal mixer will have a number of spurious responses. The following equation describes the spurious frequencies as a function of harmonic order:

where

$$
\mathrm{n}=1,2,3 \ldots
$$

$$
m=1,2,3
$$

$$
F_{s}=\text { Signal frequency }
$$

$$
F_{\text {LO }}=\text { Local oscillator frequency }
$$

$$
F_{{ }_{A}-F}=I-F \text { frequency }
$$

$\overline{\text { ZV1009 }}$

It can be seen that when $m=n$ spurious responses will occur between the local-oscillator frequency and the signal frequency. Experimental results show that, for either a single-ended or a balanced mixer, the sensitivity for the $m=n=2$ case is about 50 db below the sensitivity at the signal frequency (Figure 2-14). To utilize the inhibit action of the receiver, it is necessary to reduce these responses in the signal channel by about 6 db . This can be accomplished easily by preselector attenuation.

To minimize the noise figure and the driving power required for the local oscillator, balanced mixers are usedin each band. Balanced mixers reduce the noise figure by canceling local-oscillator noise; this is particularly important at low intermediate frequencies and where a BWO is used as the local oscillator. IN23EMR crystals will be used for band 2, and IN21EMR crystals will be used for other bands. The conversion loss (L_{c}) specification for the LN2LEMR crystals is $3.5(5 \mathrm{db})$ and the noise temperature (T) is 1.4 (1. 4 db).

If we assume an $I-F$ noise figure of about $3.2(5 \mathrm{db})$, the overall noise figure of the receiver (neglecting preselector loss) will be 10.6 db .

$$
F=L_{c}\left(T+F_{I-F}-1\right)=10.6 \mathrm{db}
$$

The insertion loss of preselector and isolators must be added to this noise figure in the bands and channels in which these components are used. Figure $2-15$ shows the receiver sensitivity as a function of overall receiver noise figure and I-F bandwidth.

STRIPLINE* circuits are used as mixers in band 1. Figure $2-16$ is a photo.. graph of the STRIPLINE ring junction band 1 mixer. Waveguide circuits are used as mixers in band 2 (Figure 2-17).

2.2.4 I-F Amplifiers

The I-F circuits are dividedinto three different units: (a) a linear preamplifier, including a gain control and band-limiting filters (Figure 2-18 and 2-19), (b) a logarithmic amplifier (Figures 2-20 and 2-21), and (c) a video

* Trademark Registered, U.S. Patent Office.

$447421-015$

Figure 2-14 Spurious-Response Characterigtics of a Mixer

MISSILES and SPACE DIVISIOPI

SEGRET

Figure 2-17 Band 2 Mixey

MISSIRES and SPACE DIVISION

Figure 2-18 1-F Preamplifier

Figure 2-19 Schematic Diagram of 1-EPreamplifier

mISSLIES and SPACE DIVISION

\because

Figure 2-21 Schenatic Diagram of Log I-F Amplifier

路 \int^{-1} ULUML

LMSD-447423
Volume I
amplifier. The logarithmic amplifier and the video amplifier are both included in the log I-E strip.

The dynamic range of the input I-F signal from the mixer may vary in amplitude from about -95 to -35 dbm . The I- \mathbf{F} amplifier must have logarithmic characteristics to meet this large dynamic range requirement and to thus ensure that variations in signal levels do not introduce errors on the diameter of the ground coverage circle. Since the amplitude comparator requires an input signal amplitude between 1 and 10 volts, the $60-\mathrm{db}$ dynamic range of the receiver input signal must be compressed to a $20-\mathrm{db}$ dynamic range at the input to the amplitude comparator.

The I-F strips are transistorized to provide maximum reliability and minimum power drain, size, and weight, Consequently the intermediate frequency must be low enough so that transistors can be used successfully. On the other hand, it is desirable to use a high intermediate frequency so that the image response can be separated as far as possible from the signal band (to ease preselector tracking problems). A 60 . Mc intermediate frequency is used. In the logarithmic I-F amplifier, the technique of successive detection is used to obtain a large dynamic range. A small detected signal is extracted from each interstage, and all of the signals thus detected are added in a resistive network. The output of the summing network is fed to a video amplifier, whose output is a video signal with an amplitude that is proportional to the logarithm of the input signal.

An eight-stage 8 - Mc-wide, double-tuned, common-base circuit is used for the successive detection. The nonlinear input impednace of a transistor in the common-base circuit performs the actual detection function. The output of the I-F portion of the circuit ranges from 2 to 20 mv for input signals from -70 to -10 dbm ; within this range, the output is logarithmic to within 0.2 mv . The video amplifier provides linear amplification, and its output amplitude will range up to 10 v .

The 2N700A transistor was selected for this application because of its ability to operate at high frequency, its uniform characteristics, and its rugged construction.

Channel bandwidths are controlled by passive filters following the preamplifiers; thus the $60-\mathrm{Mc} \log \mathrm{I}-\mathrm{F}$ strips, which have an $8-\mathrm{Mc}$ bandwidth, can be used interchangeably in all bands. The preamplifier gain control has a range of 10 db . In all but two channels, the $I-F$ bandwidths are fixed by means of filters. The I-F band-pass characteristics are tabulated in Table 2-1.

2.2.5 Amplitude Comparator

The amplitude comparator (Figures 2-22 and 2-23) determines whether an intercepted signal originates within the desired region of coverage of the antema system. It accomplishes this by comparing the amplitudes of the video pulses from the signal and inhibit channels. A difference bias determines the amount by which the amplitude of the signal-input pulse must exceed that of the inhibit-input pulse to produce a signal accept condition.

The positive signal channel-input pulse and inhibit channel-input pulse are received at the bases of $Q 1$ and $Q 9$, respectively, where they are superimposed upon present quiescent DC levels. These DC levels determine the normal back bias on the base-emitter junction of $Q 2$, the comparator stage. When the signal pulse exceeds the inhibit pulse by the difference bias (difference between present DC levels plus Q^{2} base-emitter voltage drop) 02 conducts. The output of $Q 2$ is amplified and triggers the blocking oscillator, Q5 via Q4. The blocking oscillator fires, establishing an accept pulse. To establish the existence of a valid intercept, two accept pulses are required by the verifier circuit in the data handler.

Transistors $Q 6$ and $Q 7$ form a monostable multivibrator, and $Q 8$ is a blanking switch. They blank the blocking oscillator after each valid intercept, thus allowing the receiver data to be processed. Provision has also been included to blank the amplitude comparator on command directly through 08 .

Figure 2-22 Amplitude Conpparator

Figure 2-23 Schematic Diagram of Amplitude Comparator

Table 2-1
I-F AMPLIFIER BAND-PASS CHARACTERITSTICS FOR F-2 (FLTS 1, 2)

	Center Frequency (Mc)	3-db Bandwidth (Mc)	$\begin{aligned} & \text { 60-db } \\ & \text { Bandwidth } \\ & (\mathrm{Mc}) \end{aligned}$
Band 1 Signal	60 ± 0.4	2.5 ± 0.2	$\begin{array}{r} 6.5+1.5 \\ -1.0 \end{array}$
Band 1 Inhibit	60 ± 0.4	4.0 ± 0.3	$\begin{array}{r} 14.0+2.0 \\ -1.0 \end{array}$
Band 2 Signal	60 ± 0.4	5.0 ± 0.2	$\begin{aligned} 12.5 & +3.0 \\ & -2.0 \end{aligned}$
Band 2 Inhibit	60 ± 0.5	7 minimum*	

[^1]Since the I- F bandwidths of the signal channel and inhibit channel are not the same, incorrect comparisons would result at the trailing edges of the video pulses. To prevent this, Q12 and Q13 generate a disabling pulse at the end of the shorter inhibit video pulse. This prevents the blocking oscillator signal from appearing at the time when the delayed signal video is present. Ql0, Q1l, and Q15 reshape the signal video pulse to drive the data handler PW oscillator with a constant voltage from a low impedance source. The PW circuit limits stretching to less than $0.5 \mu \mathrm{sec}$ under worst case conditions. The signal characteristics of the amplitude comparator are:

Input PW	0.5 to 31.5 usec
Output PW	0.6 to 32 usec
Input pulse amplitude	1 to 10 volts
Difference bias adjust-	0.5 to 1.5 volts $(3 \mathrm{db}$ to 10 db$)$
ments	
Accept PW	maximum: $9 \mu \mathrm{sec}$ minimum $: 3 \mu \mathrm{sec}$
Accept pulse amplitude	12 ± 1 volts

LOCKHEED AIRCRAFT CORPORATION

2.2.6 Receiver Power Supplies

2.2.6.1 Band 1 Power Supply. To incorporate the F-l klystron oscillator into the $\mathrm{F}-2$ (flts 1,2) equipmont it was necessary to change the band 1 power supply. The input requirements remain as $115 \mathrm{v}, 2 \mathrm{kc}$. The output voltages are:
a. 500 v dc regulated ± 5 percent
b. 300 v dc regulated ± 5 percent
c. $\quad 6.3 \mathrm{v}, 2 \mathrm{kc}$ nonregulated

Regulation is achieqed by a transistorized amplifier sensing the output vollage error and driving a low-gain magnetic amplifier control winding to oppose the error. Full wave rectification is used to minimize the filtering. The entire unit is encapsulated in solid epoxy.
2.2.6.2 3and 2 Power Supply. The band 2 local oscillator is a VA161 voltage-tunable BWO. The frequency coverage is from 9 to 10 kmc ; this range requires a normal 200 to 300 v sweep of anode voltage. This anode voltage and the BWO bias voisage power sipply operates from $115-\mathrm{v}, 2 \mathrm{kc}$ power. The requirements for the supply for band 2 operation, assuming an overall accuracy of 1 percent, overall stah.ility of 0.25 percent, and a maximum frequency deviation of luo ke due to power supply ripple, are shown in Table 2-2.

A schematic diagram of the band 2 power supply is shown in Figure 2-24. Two outputs are provided from the power transformer. One output provides up to 50 v dc at 5 milliamperes, which is used for grid voltage. The other provides 320 v at 20 milliamperes and is regulated before being applied to the anode. Diodes CR3 and CR6 constitute a bridge rectifier. A capacitor input filter is used for ripple reduction.

Table 2-2
EAND 2 PO: ER SUPPLY CHARACTERISTICS

: ?ramoter	$\begin{gathered} \text { Mngatude } \\ (\text { (wits } \end{gathered}$	Accuracy (proce:t)	$\begin{array}{r} \text { Statinty } \\ \text { (percent) } \end{array}$	$\begin{aligned} & \text { Ripple } \\ & \text { (millivolts) } \end{aligned}$
Sat \because, itise	115.40	± 5	-	-
	$\begin{gathered} 200 \text { to } \\ 300<6 \\ n o m: a 11 \end{gathered}$	$\pm 2 *$	$\pm 0.67 \%$	5
G\%airn itum	up to folds	$+5$	-	10

Finulat is achoved by the wso of diferential amplifier controlliag series fonsisturs, Trunsistor 01 is cuntrolled by the difference between the refer-

 $=\because \because H^{\prime} \because$:h the wipia, controls the output voltage. Transistors $Q 3$ and 05
 Bhe rosuldur duens on the stability of the voltage reference tubes and the wuthut divder (fo, R7, and R8). The reference element is a 6308 coldCino: fasfand, flow-discharge tube, R6 and R8 are metal-fimm res:sturs with temucrature coefficients matched to potentiometer R 7 which is :Bri (b) control the untont from 200 to 300 V . The sensitivity of the VAl6l Eif (o chaner in has voltige is such that no grid voltage regulation is regarad A simple full-waye hidee is used in the output with a resistor-

Sume the prad current is constant over the frequency band, voltage adjustment fan br accomplishod by means of a series dropping resistor. Voltage adjustment is needed to fix the power output of the BWO at the proper value.

2.2.6.3 Filament Tranformers. Bunds 1 and 2 receivers required the following flament transfomme chanacteristics:

Input Voltage	115 v 2 kc
Output Voltage	Band 16.3 vac at 0.68 ampere
	Band $2: 9.0$ vic at 1.0 ampere

Intial surge currents are limted by using transformers with magnetic shunts.
2.2.7 Frequency Encoder
 receiver frequency scin crave mermorsm. Rotation of the drive shaft is proportinnal to the receivne frequency. The shaft encoder is used in such a manne: that chamet intornation is in one's-complement-gray-code form. Errors that might result fow reading out of the code whed position during rotation are minimized by the use of a gray code in which only one bit chomes at a time, whongoing from one chamel number to the nexthigher nanber. The 9 -bit encoder will accommodate 512 frequency chamels. Since the number of I-F chamels is 280 in band 1 , and 200 in band 2 , the encuser provides adequate capacity.

2. 2. 8 Dund Swatel Control

The receiver band switch control unit is a portion of the system control and nas the followng functions in each recelver:
a. Stixts the scan motur on command from the system repeat cycle timer
b. Supplias power to the recemers
c. Binnks and unblanks the recenver's output at exact times in the scan sequence
d. Jentifies which recenver is on
r. Stups the scan motor

To iccomplish the above functions the bund switch control unit recognizes start wad siop commands from the repeat cycle timer and specific binary
numbers from the shaft encoder. Paragraph 2.5.8.2 in this section gives the detailed sequance of this timing operation.

2. 3 PAYLOAD DAIAHANDLEN

The payload dita hander is a transistorned digital device that performs the data hamiling functine requived in the ferret equipment. By examining the vico pulses sssued by the ferret receivers the data hander (a) determines the accurtibuty of these signals (verification), (b) analyzes the signals for portod betwror pulses (PRE), and (c) moasures the PW of the signal. The data hander also reads out the frequency channcl codes from the receivers' shaft ercubes and rotes the time of intercept. All of this information is cxpressedincigathlurm.

As shown in the block diognam in Figure 2-25, the data handler is divided A.0 fou: scotuns which are described bricfly in the following paragraphs.
a. Verifcation, PRF, and PW Neasurement - Zhis section determines whothe the sidnil recosed is a validintercept. If the signal is a valid intercept, this sectiongenerates binary words representing Ph and PRF, mure correctly, pulse interval. The logic diagram of hins section is shown in Figure $2-26$.
b. Erequency and Time - Foreach intercept this section performs redcout of time, readout of frequency shaft encoders, and readout of bam code matrix. The logic diagram is shown in Figure 2-27.
c. Ditu miterrocition - This section causes the stored binary data in the circuit precerins it to be read out into the recording circuits in serad order. Ine logic diagram is shown in Figure $2-28$.
d. Necorder Contrul - This section controls the start-record-stop creles of the recorder, and it shapes, combines, and distributes dida pulses going to and from the recorder. The logic diagram is shown in Figure $2-29$.

2, 3. 1 Operation of Verification

Accept pulses trom the amplitude comparator are subjected to a verification test before thoir characteristics are recorded. This test is necessary to prevent the noise palses that will occasionally be present in the receivers,

Figure 2-25 Block Diagram of Payload Data Handler

Figure 2-2́ Logic Diagram: Verification, PRF and PW

$2-+1$
secret
MISSILES Ond SPACE OIVISION
from being considered as received radar pulses. For a signal to be recorded as an intercept, at least two pulses must be received with a period of time equal to the longest interpulse period expected in the particular band under investigation. The maximum interpulse period expected and allowed for in each band is 8 milliseconds. If a received signal is not verified, the data hander is reset and made ready to accept the next signal.

2.3.2 Measurement Cycle

The measurement cycle includes the measurement of the interval between the first and second pulses, the interval between the second and third pulses, and the PW of the second puise. Two pulse interval measurements are made so that the presence of two or more radars or PRF modulation can be detected. The PRF measurement rcliability is also increased by the use of two counters. The PW of the second pulse is measured so that the pulse distortions at the edges of the pass band will have minimum effect on the measurement.

2. 3. 3 Feadiout Crucle

The data hander's readout cycle includes the inter rogation of both of the PRF counters, the PW counter, the time counter, the frequency channel shaft encoders, and the band indication matrix; the serialization of these data; and the reset of the measurement and verification circuits. A parity-check bit is generated at the end of this process, and it appears at the end of the data. After an intercept has been verified, the recorder is instructed to start and is permitted to reach proper recording speed. Then, the data are read out and sent to the recorderis write circuits. When the readout process is completed, the entire data handler is cleared. Although the time counter is in the data handler, it is controlled by the satellite clock and continuously provides satellite time. The frequency ercoders and the band code matrix are located in the receivers and in the power and control assembly", respectively. They provide contimuous frequency and band information to tha data handier.

MISSILES and SPACE DIVISION
2. 3.4 Areasurement Information
2.3.4.1 PRE (9 bits):

Minmum PRF (pps) 125
Maximum PRE (pps) 40,000
Quantum ($\mu \mathrm{sec}$) 25
Accuracy ($\mu \mathrm{sec}$) ± 25
2. 3. 4.2 PW (6 bits):

Counter Capacity 0 to $31.5 \mu \mathrm{sec}$
Accuracy 5 percent and $\pm 0.5 \mu \mathrm{sec}$

Quantum $0.5 \mu \mathrm{sec}$
2. 3. 4. 3 Time (13 bits):

Counter Capacity 8192 counts
Accuracy
$+0,-1$ count
Quantum
1 second
2. 3. 4. 4 Data Furmat. The data handler issues information in the following order to the tape recorder of the data link. All the data are furnished ir a straight binary code except for frequency data, which are read out in one's -complement-gray-code. The bit numbers increase as significance increases.

$\frac{\text { Bits }}{1 \text { to } 9}$	$\frac{\text { Parameter }}{\text { PRF-1 }\left(t_{1}\right)}$
10 to 15	PW
16 to 24	PRF-2 $\left(t_{2}\right)$
25 to 37	Time
38 to 46	Frequency
47 to 49	(channel number)
50	Band
	Parity

2.3.4.5 Cycle Time. Cycle time is defined as the time between receipt of the first accept pulse and the end of the recording process. In the F-2 (Elts 1, 2) equipment, it is 24 milliseconds.

$$
2.43
$$

2. 3.5 Operation During a Typical Intercept

Figure $2-30$ contains timing diagrams for the payload data handling system, The first pulse of the pulse sequence enters the pulse steering circuit, which is a two-stage binary counter. Entry of a pulse into the pulse steering circuit opens a gate that permits the continuously running crystal-controlled multivibrator to trigger the 9 -bit $P R F-1$ or t_{1} counter. If the count in the ${ }^{t}{ }_{1}$ counter reaches the limit of the verification time (a preset binary number for each band) a nonverified reset pulse is grnerated in the counter. The t_{1} counter resets itself to the initial state, prevents readout, and resets the pulse steering circuit to its initial state.

If the first PRF interval is acceptable, the second incoming video pulse causes the pulse steering circuit to shut off the clock pulse gate to the t_{1} counter, and permits a clock pulse gate to trigger the PRF-2 or t_{2} counter. The t_{2} counter counts clock pulses until the third input video pulse is received by the pulse steering circuit. The third pulse shuts off all clockpulse gates and closes the pulse steering circuits, thus keeping out additional pulses until the information stored in the PRF counters is readinto the tape. If the second PRF interval is longer than the band verification time the t_{2} counter resets itself to zero and closes the pulse steering circuit input to additional pulses in the same manner in which the circuit is closed when a third pulse has been received. Readout proceeds normally.

The pulse steering circuit performs the additional function of permitting the 2-Mc start-stop oscillalur to be turned on for a time corresponding to the widit of the second received pulse. The PW of the second pulse will then be registered on the 6 -bit $P W$ counter. A pulse longer than the counter capability of $31.5 \mu \mathrm{sec}$ will cause the counter to overflow. All pulses longer than $31.5 \mu \mathrm{sec}$ will register as $32 \mu \mathrm{sec}$. Entry of the first pulse of a sequence into the pulse steering circuit also starts the recorder control and readout action.

The 13 -bit time counter receives pulses from Subsystem $C \& C$ at 1 -second intervals. The maximum count is 8192 seconds. To minimize the possibility

of error, a portion of the time counter circuits prevents the time counter from changing count during readout. Time pulse that occurs during read. out is delayed and then added to the counter after readout. Every 8192 seconds a pulse is supplied by Subsystem $C \& C$ to reset the counter and ensure synchronism with the vehicle clock.

One-shot delay multivibrators, which are triggered by the pulse steering circuit, start the recorder three maximum pulse intervals minus 10 milliseconds after the first received pulse. The recorder requires less than five milliseconds to reach recording speed. Three maximum pulse intervals minus five milliseconds after the first received pulse, the readout counter, which ধenerates clock pulses 1 to 50 at a 10 . ke rate, is started.

The binaly numbers in each information counter and on the frequency shaft encoder are read out by the clock pulses through AND gates in the data sampler matrix section. A parity-check bit is also added. The write portion of the recorder circuits transforms the data to non-return-to-zero (NRZ) form for entry into the tape recorder. Four tracks are recorded-two each of data and $10-\mathrm{kc}$ timing pulses. Clock pulse 5 l stops the tape drive and resets the data handler to its initial conditions.

The reproduce section of the recorder circuits combines the information on the redundant timing and data tracks of the tape recorder and converts combined information to return-to-zero $(R Z)$ form for telemetry transmission to the readout station. The order of the RZ output format will depend on whether the recorder playback is in the reverse or forward direction (first or second readout). During readout the recorder cperacion is controlled by RTC's from the TAS.

The data handler readout of time information alone or time and attitude information alone can be controlled from the power and control assembly. The attitude measurement is made by driving the data handler with a signal consisting of a three-pulse sequence derived from the attitude converter described in paragraph 2.5.4. The time between the first and second pulses is proportional to the pitch reference voltage; the time between the

second and third pulses is proportional to the roll reference voltage. The sequence is fed into the pulse steering circuit and appears as a PRF measurement of the t_{1} and t_{2} counters; however, no frequency or $P W$ measurement will appear in this word. This attitude wordis produced once for each complete frequency scan cycle (located between band 1 and 2 words).

A one-bit parity counter that is triggered by each preceding data pulseduring readout adds a "l" if the number of l's on bits 1 through 49 is odd. This provides the TAS with a means for detecting bit errors in recording or data transmission.

Provision is made for permitting the data handler's output to bypass the recorder upon command. By using this direct readout and by inserting a test signal input to the data handler, the data are transmitted directly over the data link without recording, thereby providing a direct check on the operation of the data handler alone. This check can be used to determine whether the redundant handler should be switched ir.

2.4 TAPE RECORDER

The tape recorder can record digital information in a start-stop fashion on magnetic tape, and can, on command, play back this information continuously in either a forward or reverse direction. The start-stop operation is used to economize on tape; the tape moves only when information is available for recording or when it is beng read out. Stored information may be read out in discrete blocks (for ground testing) or continuously.

The recorder is designed to accept an NRZ type digital signal. In this type of word signal, each change of voltage level designates a 1 bit, and each absence of level change designates a 0 bit. The digital word contains 50 bits of information and is of five milliseconds duration. The recording is accomplished by completely saturating a flexible one-quarter-inch-wide magnetic tape in alternating diractions. Four separate and identical channels are available for recording. Two channels are used to redundantly
record 50 -bit data words, and the remaining two are used to redundantly record 50 -bit synchronous timing words. A schematic diagram of a single channel read and write amplifier is shown in Figure 2-31. Four such circuits are included on separate printed-circuit cards in the recorder. The write circuit consists of four transistors set up in an "H" fashion to switch current in the recording head from one direction to the other. When a zero level input signal is applied, transistor s witches $Q 7$ and $Q 10$ are conducting, and current passes through the head and completely saturates the tape in one direction. When a $28-v$ write signal is applied, transistor switches Q7 and Q10 are cut off, and Q8 and Q9 conduct. Current now passes in the opposite direction. Each change in the input from 0 to 28 v or 28 to 0 v results in the tape being saturated in the opposite direction. The speed at which the tape moves in the recorder is determined by two factors:
a. The electronic consideration of pulse packing density on the tape
b. The mechanical consideration of starting, moving, and stopping the tape and associated mechanisms at rates in keeping with the system requirements

For the particular read head and amplifiers involved, tape speeds of approximately 18 ips or faster give adequate response. Conversely, tape speeds of 30 ips or faster impose mechanical resonance problems and pose difficulties in bringing the tape the correct speed in the desired time. The speed of 22.5 ips was selected as a practical compromise of the twofactors. In particular, the reduction from 30 to 22.5 ips improves the mechanical operation by:
a. Reducing the quantity of tape required (reduced inertia of tape to pull)
b. Lowering the final tape speed (easier start-time requirement)
c. Shortening the length of tape to move per burst of words (reduces reel oscillation)

The tape transport mechanism is set up so that a 13.7 ± 1.1 millisecond rectangular pulse supplied to the actuator circuits will activate the tape pinch rollets and brake release. The amplitude of this pulse is from 5 to

SECRET
LMSD-447423
Volume I

Approved for Release: 2017/08/17 C05100033

12 v. The leading edge of the actuator square wave is 5.7 ± 0.7 milliseconds ahead of the first digit in the information word. The 5.7-millisecond interval permits the tape to reach the operating speed of $22.5 \pm 4.5 \mathrm{ips}$. The end of the actuator square wave extends nominally 3 milliseconds beyond the last digit of the word. At the end of the actuator square wave, the pinch roller is pulled away from the tape and braking torque is applied by the brake. The maximum actuate rate of the recorder is 66 actuations per second. The tape length is sufficient for 10,000 recorded words. The actuator and recorder control electronics are shom in Figure 2-32. When an input puise is applied to $Q 1$, it conducts, causing $Q 2$ to conduct which in turn causes $Q 3$ to conduct. Current drawn through $Q 3$ energizes the brake coil (which releases braking torque) and also draws current through the low-resistance pulse coil of the actuator.

To accomplish continuous tape motion a separate actuator line (to a high resistance actuator coil) and a separate brake line are supplied. A grounding signal can be supplied through these separate lines to maintain steady-state conditions. Less power is required in the steady-state mode than in the pulsed mode.

In the readout mode, each change of state on the tape produces a positive output pulse in its respective output channel. A zero bit on the tape (no change ofstate on the tape) results in no signal being issued on the particular channel. The circuit that accomplishes the readout--the read amplifier cir-cuit--is shown in Figure 2-31. The stages that include 01 through Q4 are biased somewhere between saturation and cutoff. When a change of state is sensed by the head, either a positive or negative pulse--depending upon the direction of saturation of the tape--is introfuced into the input of the read amplifier. Depending upon the polarity of the input pulse Ql beccines more conductive or more cut off. Each succeeding stage amplifies the input pulse in a similar manner until a pulse is introduced into the pulse transformer. The output pulses are full-wave rectified and only the negative-going pulse will pass through to 05 . When a pulse passes to $Q 5, Q 5$ will conduct causing emitter follower $Q 6$ to conduct, resulting in a positive pulse at the output.

SECRET

LMSD-447423 Volume I

An electrically conducting leader is spliced to each end of the tape and is connected to the supply reels. In the event that the system fails to supply the proper stop signals, sensors are provided which automatically prevent the tape from leaving the supply reels. A summary of the tape recorder specifications follows:

Number of Tracks:	4 (two for information and two for synchronization)
Steady-State Recording Speed:	22.5 ips
Steady-State Readout Speed:	22.5 ips
Start-Record-Stop Cycle:	5 milliseconds for each interval
	(nominal)
Bit Density:	445 bits per inch (nominal)
Tape Capacity:	sufficient for 10,000 record blocks
Tape Length:	250 fect (nominal)
Tape Width:	0.25 inch

When the back end of the tape has reached the record heads, the recorder will automatically rewind and the ferret equipment will be ready for new intercept data.

2.5 PAYLOAD CONTROL EQUIPMENT

The control functions for the fayload are performed by the power and control assembly shown in Figure 2-33. A block diagram is shown in Figure 2-34. The power and control assembly consists of the following:
a. Repeat Cycle Timer - This unit controls the band-switch cycle.
b. Low-Voltage Power Converter - This unit supplies 12 v for the transistor circuits in the receivers and data handlers.
c. Internal Programmer and Band Code Matrix - This unit generates the signals that place the start-stop i ze words on the tape, and provides for receiver blanking during the recording of these words. It also provides a digital indication of the receiver that is acively scanning.
d. Test Generator - This unit provides a test signal to check tae performance of the receivers and/or data handlers.

Eigure 2-33 Power and Control Assembly

2-53

e. Recorder Control - This anit controls the power for the readout circuits. It also programs the tape drive motor in the proper direction for recording and readout.
f. I-F Preamplifier Gain Control - This unit permits the gain of each preamplifier to be changed in $1-\mathrm{db}$ steps. Eleven steps and one off position are provided.
g. Redundant Circuit Controls - This unit is a switchover network that switches critical signals from one data handler to the other.
h. Attitude Converter - This unit is a d-c level-to-pulse interval converter. It converts the analog voltages--pitch and roll--to pulse format for digitization and recording on the tape.
i. Crystal-Current Monitor - This unit is made up of a set of magnetic amplifiers that amplify crystal currents to a level suitable for telemetering purposes.

These units control the basic operations of the receiving and data handing equipment. The selecticns of modes of operation (Table2-3) are accom. plished by the real-time commands (RTC) and stored program commands (SPC) supplied by Subsystem C\&C to the payload. These commands are received in the form of relay contact connections.

2.5.1 Modes of Operation of Payload Equipment

There are five basic modes of operation of the payload equipment; they are listed in Table 2-3. The table indicates the SPC's or RTC's, that initiate the respective modes. The normal-receive mode, which can be activated by either SPC's or RTC's, has a large number of variations.

The variations have to do with the bands that are energized. This mode, when controlled by SPC's, is completely flexible; when it is controlled by RTC's, all bands are actuater. The receive-with-direct-readout mode is the same as the $R T C-a c t u a t e d$ normal-receive mode except that the recorder is bypassed--that is, the digital data are read out into the data link without being recorded.

In the normal readout mode the recorder runs in the reverse direction. The first intercept word read out is the last one recorded. When all the data have been read out, the read heads of the tape recorder are at the front end of the

Table 2-3

MODES OF OPERATION OF F-2(FLTS 1, 2) FERRET EQUIPMENT

Mode

SPC
(in required time order)
RTC

1. Normal receive
a. Energizes band 1

1, 7, 6, 8
b. Energizes band 2
$2,7,6,8$
c. Energizes any combination of above bands
any, (1 to 5),
7, 6, 8
d. Energizes all bands
2. Receive with direct readout (all bands)
i 3. Normal readout
4. Second readout
5. Test receive--direct readout
a. Equal signals to I-F strips
14, 13, 6, 9, 10, 12*
b. 3-db attenuation of inhibit signal
c. $7-\mathrm{db}$ attenuation of inhibit signal
d. Video supplied to data handler

14,6,2,7
$14,6,13,7$
3. 1

2, 1
$14,13,6,9,10$.
11. 12*
$14,13,6,9,10$,
11. 12
$14,13,6,9,12 *$

In addition, there are two other functions performed by the RTC's and that can be considered modes of operation.

1. I-F gain adjustment

4, 5
2. Change data handler
8. 12눈
*RTC 12 must be opened for reset.
tape. If the recorder is now commanded to run in the forward direction, a second readout of data may be accomplished. Intercept words are now read out in the same order in which they were recorded.

The test-receive mode is used to check the performance of the $1-F$ amplifiers, amplitude comparator, and payload data handling system. This mode is a receive-with-direct-readout mode, except that a test generator is energized and the receiver local oscillators are not energized. The test mode has four phases: (a) equal $I-F$ signals are fed to all I-F amplifiers, (b) the I-F signals fed to the inhibit channels are 3.0 db less than those fed to signal channels, (c) the I-F signals fed to the inhibit channels are 7.0 db less than those fed to the signal channels, and (d) a video signal is fed directly to the data handler. Although I-F signals are applied to all I-F amplifiers, responses are obtained only from the actuated band. During the test-receive mode of operation all critical points are monitored.
' ${ }^{\prime}$ wo other operational functions can be activated by RTC's. They are $I-F$ gain adjustment, and the substitution of the redundant data handler. An $I-F$ gain correction can be made if the operation in the test-receive mode indicates the necessity. These gain corrections are made on each I-F amplifier by a two-step process: first, the amplifier whose gain is to be corrected is selected, second the gain correction is made. These corrections can be made to compensate for changes in the gain of an individual I-F amplifier or in the preceding stages. The capability of switching to the redundant data handler is provided in case of failure in the original unit. The failure of a data hander will be determined by analysis of the monitoring data and intercept data.

2.5.2 On-Off Control and Internal Programming

The payload is placedin its various operating modes by means of SPC's or RTC's. RTC's are used when the satellite is within range of a TAS. At other times SPC's with proper time indexing perform the turn-off and turnon operations.

MISSILES and SPACE DIVISION
2.5.2.1 Stored Program Commands. A list of SPC's required for the payload are tabulated in Table 2-4. Six commands are required. These commancis are provided in the form of sets of relay contacts that perform the following functions:
a. Activate either or both receivers.
b. Permit the tape recorder drive motor to turn in the forward direction.
c. Turn on low voltage supplies, start the repeat cycle timer.
d. Turn on power for the local oscillator; put a preliminary identification word on the tape (via the internal programmer), and then unblank the receivers.
2.5.2.2 Real-Time Commands. The RTC's required for the payload are tabulated in Table 2-5. Fourieen commands are required. These commands are also in the form of sets of relay contacts that perform the follow ing functions:
a. Permit the tape recorder drive motor to turn in the reverse direction (the direction for data readout).
b. Apply power to the read electronic circuits,
c. Permit the tape recorder drive motor to turn in a forward direction (the direction for a second readout of data if a second readout is required).
d. Activate all receivers.
e. Turn on low voltage power supplies (similar to SPC-7).
f. Turn on power for local oscillators (similar to SPC-8).
g. Permit a gain adjustment for any preamplifier. A gain adjustment is made in 11 steps of 1 db each. An off position is also provided.
h. Permit operation of test generator for checking on-orbit operation of receivers and data handling equipment.
i. Permit switchover to standby data handler (and return).
j. Permit a direct readout from data handler (bypassing recorder).
2.5.2.3 Timing Diagram. A timing diagram of the sequence of $S P C^{\prime} s$ for the normal receiver cycle is shown in Figure 2-35.

$$
2-58
$$

MISSILES and SPACE DIVISION

Table 2-4 (contd)

∞ m ∞ ∞

SPC Number	Command Name 7
READY RECEIVERS	
8	RECEIVE CYCLE ON

Function	Contacts (a)	Contacts (b)
Energizes low-voltage power supplies	+28.3 v low-voltage power supply, receivers and data handler circuits	400-cps power for repeat cycle timer
Starts repeat cycle timer		
Triggers internal	2 kc to all receivers	To internal programmer

Table 2-5 (contd)

```
            RTC
Number
```

 Command
 Name
 READY
 KECEIVER
 7 RECEIVE
 CYELE ON
 8 STANDBY
 CIRCUIT
 CONTROL
 9 TEST
 GENERATOR
 CONTROL
 TEST
 GENERATOR
 CONTROL
 11 TEST
 GENERATOR
 CONTROL
 12

Command Name

READY RECEIVER

YくL
STANDBY
CIRCUIT CONTROL

9 TEST GENERATOR CONTROL

GENERATOR CONTROL

TEST GENERATOR CONTROL

DATA
HANDLER RESET

Function

Same as SPC-7	(see SPC-7)	(see SPC-7)
Same as SPC-8	(see SPC-8)	(see SPC-8)
Switchea in standby data handling system	To switchover network	Not used
Turns on video test generator	$+12 v$ To pulse generator	$-12 v$ To pulae generator
Turns on oscillator, disconnects video generators from data handing system, unblanks receivers	$\begin{aligned} & +12 \mathrm{v} \\ & \text { To oscillators } \end{aligned}$	To relay for switching and to internal programmer
Switches in attenuacor 3-db	To attenuator relay in test generator	To RTC-12
```Switches in attenuator 7-db (when RTC-11 is closed)```	To attenuator relay in test generator	To data handler reset circuit
Resets data handler		To RTC-8

Tatle 2-5 (contd)


MISSIES OAS SPACE DIVISION



Figure 2-35 Timing Diagran of System On-Off Control

3. At time $T_{0}, S P C-1$ and $S P C-2 p$ rmit filament power to warm up the local oncillatore and aloo permit motor control relays and power control relay to be energized.
b. At $T_{0}+48$ econds. SPC-7 turns on low voltage power eupplies and wart the repeat cycle timer.
c. At $T_{y}+56$ econds, $S P C-6$ starts the tape recorder motor in the forward dise:tion. The motor has 8 seconds to get up seed before the recenver are turned on. The receivers are blanked at this fime.
d. Ai $T_{0}+64$ seconds, SPC-8turns on power to the local oscillators. The internal programmer is triggered at this time. The following elgnals are generated:

1. An imitial reset signal is sent to the data handier.
2. A $75-m b l i n e c o n d g a t e$ is generated and is used to pull in the recorder caparan and to put a short space on the tape. The trading edge of this gate ds used by the data handler to write a tume only start word on the tape.
3. Fifteen milliseconds later, the receivers are unblanied.

The order of the turn-off cycle is:
a. Attime $\Gamma_{1}, S P C-8$ removes power from local oscillators and both recemers are blanked. $\mathrm{SPC}-1$ to 2 open and permit further receiver actson:

1. A 75 .millisecond gate is generated. The trailing edge of this gate is used by the data handling system to write a time only stop word on the tape.
2. A 15 -millisecond gate is triggered by the trailing edge of the 75 -millisecond gate. The trailing edge of the 15 -millisecond gate triggers the recorder start-stop multivibrator in the data hander. This places a mall trailer on the tape.
b. At $T_{1}+16$ seconds, SFC-7 turns off the low voltage power supplies and removes $400-c p s$ power from the repeat cycle timer. SPC-6 stops the tape motor.
2.5.2.4 Internal Programmer. The internal programmer generates the long delay gate when triggered by the opening and closing of SPC-8 or RTC-7. Figure 2-30 i a block adagram of the circuit. Several trigger cirm cuit are required. These are resistor capacitor networks. When SPC=8or RTC-7 transfers from off to on position, a capacitor is discharged through a resistor, generating a trigger; this action also starts a 75 -millisecond delay
$2-65$

LOCXMED AIECEAST CORMOATION


L





最荡

multivibrator. This multivibrator places the zero word leader on the tape. The trailing edge of the multivibrator signal causes the tape dat handing system to record a time-only start word. When SPC-8transfers from the on to off position, a second 75 -millisecond delay multivibrator is triggered. The trailing edge of the multivibrator signal causes a time only word to be recorded on the tape. In addition, a 15 -millisecond multivibrator is triggered. The trailing edge of its signal, places a zero-wordtrailer on the tape. A trigger circuit is also included; it unblanks the receivers whenever the test-receive mode is initiated.

### 2.5.3 Low-Voltage Power Supply

The power available from the vehicle auxiliazy power supply does not fill all the needs of the ferret equipment. It is therefore necessary to provide lowvoltage regulated power supplies for transistorized circuits. The primary considerations in the design of these supplies are overall efficiency, size, weight, and reliability. Special power supplies that are required by each receiver, including filament transformer power supply, are included in each receiver assembly. The power converter in Subsystem $F$ supplies $\pm 12 \mathrm{v}$. The regulation is $\pm 1.5$ percent under all conditions of load, input, and temperature variations. Maximum output current is 500 ma for each output ( +12 and - 12 v). A saturable-core square-wave voltage converter is used to supply the $\pm 12 \mathrm{v}$. To increase the overall converter efficiency, the regulated $28.3 \mathrm{v} \mathrm{dc} \mathrm{supply} \mathrm{voltage} \mathrm{is} \mathrm{used} \mathrm{as} \mathrm{the} \mathrm{input} \mathrm{voltage}$.

The $\pm 12$ v power supplies provide transistor operating voltages for the data handler, control circuits, I-F amplifier, and amplitude comparator.

The $\pm 12$ v power supplies have identical circuits (Figure 2-37). The input to each regulatoris a rectified and filtered 1 -ke square wave derived from a common dc-to-dc converter.

Error amplifier Q8 compares the voltage at the junction of divider R9 and R10 with the voltage from CR7 and CR8. Since R9 and R10 are across the output, the voltage at the emitter of 08 is proportional to the output. The base voltage of $Q 8$ is fixed by voltage references CR7 and CR8; therefore,


ULUIIL+
LMSD-447423
Volume I

$2-68$
the collector current of $Q 8$ is proportional to the output voltage. This collector current, amplified by $Q 6$, llows through resistor R4. The voltage drop across $R 4$ is the collector voltage drop of series transistor $Q 4$, which controls the output voltage.

### 2.5.4 Attitude Converter

To record satellite attitude data with intercept data on the digital tape recorder, it is necessary for the attitude data to be in digital form. The attitude is measured by a horizon sensor (not part of Subsystem F). The outputs of the sensor are d-c voltages that are proportional to the displacement angles (pitch and roll) measured with respect to the satellite axes. The polarity of these voltages depends on the directions of displacement.

The conversion to digital form is a two-step process. First, pulses are generated, with their time separation proportional to the pitch and roll voltages; second, this time separation is measured by digital techniques to produce a digital number.

The conversion from voltage to time is made in the attitude converter shown in Figure 2-38. This unit contains two sweep generators, one for each attitude voltage. The sweep generators start their sweep at the most negative voltages expected and rise through zero to the most positive voltages expected. The first sweep (pitch) is triggered by the payload control system; when the sweep voltage equals the pitch voltage, a pulse is generated that is separatedin time from the triggering pulse by a time proportional to pitch voltage. The pulse generated by the pitch measurement triggers the second sweep, which responds to roll voltage in the same manner as the first sweep does to the pitch voltage. Thus, the output of the attitude converter has the form of three pulses. The interval in time between the first two represents the pitch displacement, and the interval between the second and third represents the roll displacement. These three pulses are fed to the data handler which responds to them as if they were a normal intercept; consequently, it measures these two pulse intervals and records them. Attitude data are

Mitch


Figure 2-38 Eluck Diagram of Attitude Converter

recorded once each frequency scan cycle. The specifications for the attitude converter are listed below.

Range of Input Level	$-5 \vee$ to +5 y
Digitization Range	3 to 43
Sweep Accuracy	$\pm 0.75 \mathrm{v}$

### 2.5.5 $\mathrm{I}-\mathrm{F}$ and Video Test Generator

The test generator will enable on-orbit testing of the $I-F$ and video amplifiers, the amplitude comparator, and the data hander.

The test generator, shown in Figure 2-39, consists of a pulse generator that supplies a video signal to the data handler, and a $60-\mathrm{Mc}$ oscillator which is modulated by the pulse generator. The $60 . \mathrm{Mc}$ oscillator supplies a signal to the signal and inhibit $I$ - F amplifiers. Attenuators are included to reduce the signal to the inhibit i-F amplifiers by 3 db and 7 db and to thus check the selection level of the amplitude comparator. The test generator is programmed by four RTC's.

The pulse generator is turned on by RTC-9. The characteristics of the out put pulse are listed below.

PW	$8.0 \mu \mathrm{sec}$
PW Stability	$\pm 0.5 \mu \mathrm{sec}$
PRF	400 pps
Rise Time	$0.5 \mu \mathrm{sec}$
Fall Time	$1.5 \mu \mathrm{sec}$

These pulses are derived from a one-shot multivibrator that is triggered by the 400 .cps aupply. A detector circuit is included to provide an indication of pulse generator operation. A d-c voltage from the detector is transmitted to the telemetering equipment. The pulses from the multivibrator are normally directed to the data handling equipment.

The 60-Mc oscillator is turned on by RTC-10. The oscillator has a frem quency stability of $\pm 0.5 \mathrm{Mc}$.



457429-1-049

Figure 2-39 Block Diagram of I-F and Video Test Generator

$$
2-72
$$

LOCKM,


When the oscillator is used as a test signal source, the pulse generator is disconnected from the data handler and is used to modulate the oscillator. The oscillator output is directed to each preamplifier through suitable isolation and attenuator networks. RTC-11 and RTC-12 decrease the inhibit signal by 3 db and 7 db , respectively.

The frequency and band information will depend on where the receivers happen to be tuned. There will be no PW measurement because the video signal is injected directly into the data handler, bypassing the amplitude comparator and its video PW measuring circuits. When the pulse-modulated $60-\mathrm{Mc}$ oscillator is used to check the I-F amplifiers, the output from a detector circuit included at the output of each amplifier is monitored to check the gaintracking characteristics. The test signal sent to the inhibit I-F amplifier is attenuated 3 db by RTC-11. An activity indicatos on the output of the amplitude comparator is checked. When the inhibit signal is attenuated 7 db by RTC-12, an accept pulse is transmitted to the data handler. This checks the selection level on the amplitude comparator. The monitoring points provide an indication when the video pulse is accepted by the data handler. A continwous train of intercept words is transmitted to the ground station via the data link. The information in these words is the same as in the video test words, except that a PW measurement is also made.

### 2.5.6 Monitoring Contral

The monitoring points for the payload equipment are summarized in Table $2-6$. The selection of the monitoring points was a compromise between equipment simplicity and sufficient monitoring information to sense failures. the frequency response of telemetering equipment limits the monitoring bandwidth to about 0.5 to 8 cps if many points are to be monitored with only one transmitter.

### 2.5.7 L-F Preamplifier Gain Adjustment

A gain adjustment is provided for the two preamplifiers contained in eachreceiver. Eleven steps of 1 db each and an OFF position are provided. The

[^2]Table 2-6

## MONITORING POINTS




$$
\begin{aligned}
& \text { pue damod dodid } \\
& \qquad 2-76
\end{aligned}
$$

gin adjusiment i made using uccesive operation of an RTC. A rotary molenodd changes the position of wafer witch which in turn varies the remistance in erie with the premplifier. This procest depictedin Eige ure 2-40. A voltage divider network providen for telemetering to the TAS the powtion of the wafer witch. To allow for expectedinaccuraciea of the letemetry equipment, the supply voltage , and the divider network, a fouslevel code and two telemetry points per witch are used. The code is listed below.

Pozition
1
2 313
4 14
5 21
$6 \quad 22$
$7 \quad 23$
$8 \quad 24$
931
$10 \quad 32$
$11 \quad 33$
$12 \quad 34$

Code
11
12

Each code number refers to one of four voltages at one of the two monitor points. These normal voltages are $0.60,1.76,2.85$, and 3.86 v .

### 2.5.8 Band-Swatch System

Each recolver contains the components necesmary to tune the local oscillator, to apply power to the receiver circuits, to unblank the receiver for the proper interval and to present a digital indication of the frequency to which the recelver is tuned when an intercept is recorded. The components requaredfor thesefunctions are:



Figure 2-40 Schematic Diagram of I-F Gain Control


MISSILES and SPACE DIVISION
a. Band-tuning motor (acan motor)
b. Analog-to-digital shaft encoder (9-bit gray code)
c. Sensor circuit
d. Amplitude comparator unblanking circuit
e. Motor controller
£. Power controller
2.5.8.1 Band-Switch Control. Figure 2-41 im a block diagram of the bandwitch system. A repeat cycle timer generates initiate signals to start the san motor of each receiver in the proper sequence. The repeat cycle timer is actuated by SPC-7 or RTC-6 (received from Subsystem C\&C). The initiate pulses are derived from cam-operated microswitches in the repeat cycle timer. In the $F-2(f 1 t s 1,2)$ payload, initiate pulses for both bands 1 and 2 have a cycling time of 13.5 secondi. SPC-1, SPC-2, or SPC-3 permit these initiate pulses to pull in a latch relay, the motor controller. Either one of these SPC'm also pulls in another latch relay, the power controller (now shown in Figure 2-41). The motor controller starts the receiver scan cycle and rotates the shaft encocer. A sensor unit continuously reads the angular scan shaft position in gray code. The gray code readings for the start and finish signals are indicated in Figure $2-41$. A short time after the end-ofscan signal for band 1 is generated, the initiate pulse for band 2 starts the scan cycle for this receiver. The band l receiver motor, however, continues rotating until a stop signal is generated from the sensor, unlatching the motor controller and stopping the $s c a n$ shaft at a reference point; band 2 scan then follows. Figure $2-42$ is a timing diagram. The scanning ratesare selected to permit each receiver to intercept a minimum of three pulses from an emitter at the lowest expected PRF. Band-switch data are summarizedin Table 2-7. Hysteresis synchronous motors areused for tuning. These motors have a maximum start time of 500 milliseconds. Their stop time is 50 milliseconds.

The stop-time requirements are met with the aid of a olenoid brake applied to the motor shaft. The brake normally clamps the shaft. When power is




44742-1.044

Figure 2-42 Timing Diagram for F-2 (Flts 1, 2)


Table 2-7
RECEIVER SCAN CHARACTERISTICS FOR F-2 (FLTS 1, 2)SYSTEM

Band
Number


Frequency
$(\mathrm{Mc})$

2500 to 3200
9000 to 10,000
Minimum
PRF

Time per   Channel   (milliseconds)	Number of   Channels	Channel   Bandwidth   $(M c)$	Time in   Band   (seconds)	Total   Cycle   Time
	24	280	2.5	6.6

applied to the motor and brake, the brake is disengaged and the motor is free to turn. When power is removed from the motor and brake, the brake stops the motor rapidly.
2.5.8.2 Receiver Control Operation. Figure $2-43$ is a block diagram of the control system for a typical receiver requiring plate and filament supplies for operation of the local oscillator. The initiate pulse from the repeat cycle timer latches the power controller and the motor controller if RTC-14, SPC-1 or -2 is activated. The power controller applies power to the local oscillators, I-F amplifiers, and amplitude comparators. The motor controller applies $400-c p s$ power to the band acan motor and disengages the brake from the motor shaft. The shaft encoder presents a continuous indication of the angular position of the scan shaft. The sensor sends start and finish signals to the amplitude comparator unblanking circuit. A delay multivibrator keeps the unblanking signal active for 25 milliseconds after the receiver is blanked. This is sufficient time for the data handler to complete the processing of any intercept received at the edge of the band.

The gating waveform is inverted and then transmitted to the control unit, where it used to actuate the proper verification circuit in the data handler. It is also used to generate in the band code matrix a digital description of the active receiver (Figure 2-44). Power for each receiver is turned off by the initiate pulse for the succeeding receiver.

The receiver blanking input permits external control of the receiver output. If a filament transformer is required, it is energized by one set of contacts on SPC-1 or SPC-2.

### 2.6 WEIGHT AND POWER SUMMARIES

Table 2-8 lists the peak power requirements of the system.
Table 2-9 lists the weight of the ferret equipment.



Figure 2-43 Functional Block Diagram of Receiver Control
$4.47827+045$
$[$.


MISSILES and SPACE DIVISION


## 44723-1.04番

Figure 2-44 Schematic Diagram of Band Code Matrix

Table 2－8
PEAK POWER REQUIREMENTS FOR F－2（FLTS 1，2） PAYLOAD EQUIPMENT

Mode	$\begin{array}{r} 115 \mathrm{v} \\ 400 \mathrm{cps} \\ \text { (watts) } \\ \hline \end{array}$	$\begin{gathered} 115 \mathrm{v} \\ 2 \mathrm{kc} \\ \text { (watts) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Regulated } \\ & +28.3 v \\ & \text { (watts) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Regulated } \\ -28.3 \mathrm{y} \\ \text { (watts }\rangle \\ \hline \end{gathered}$	Unregulated   $+28 v$   （watta）
Normal Receive	59	17＊／35	26	Negligible	45
Readout	30	－	5.5	0.1	20
Standby	－	－	2.2	Negligible	－
Test Receive	29	17＊	27.5	0.1	21
Receive with Direct Readout	29	17＊／35	27.5	0.1	21
Gain Adjust	－	－	－	－	84

＊Warmup power only．Power factor will be corrected tu 0.8 minimum．

Table 2－9
ESTIMATED WEIGHTS AND VOLUMES OF F－2（FLTS 1，2） PAYLOAD EQUIPMENTS

Ilem	Weight   （pourds）	Volume   （cubicfeet）
Band l Receiver	60	1.21
Band 2 Receiver	50	0.99
Tape Recorder Assembly	20	0.39
Data Handler	18	0.45
Data Handler（redundant）	18	0.45
Power and Control Assembly	26	0.25
Structure	58	1.43
Harness and Connectors	14	
Antennas and Mounting Platform	38	
Including Dummy VHF Antenna		

Total
302

$$
2.86
$$



## SECTION 3

## FERRET 2 (FLIGHTS 3 AND 4) PAYLOAD EQUIPMENT

### 3.1 ANTENNAS

Band 1 and band 3 c antennas are being designed to provide about a 30 -degree signal antenna beamwidth, about a 70 -degree inhibit antenna beamwidth, circular polarization, and a circular coverage area intercepted on the earth's surface. Since only the composite radiation pattern of the signal and inhibit antennas affects emitter location, beamwidth of the signal antenna can be defined as that angular region in which the gain of the signal antenna is greater than that of the inhibit antenna. Generally it is desirable to have moderate gains. 10 to 20 db , in signal antennas. Such gain is readily obtainable in the Subsystem $F$ antennas at the higher frequencies (above 1 Mc ) but is impossible because of antenna size limitations at the lower frequencies.

The band 1 antennas for the $\mathrm{F}-2$ (flts 3, 4) payload will be similar to those used on the F-2 (flts 1, 2) payload. Their placement, however, in the antenna array is necessarily different.

A single antenne structure of a teardrop configuration is used for both signal and inhibit functions in band 3 b . This is accomplished by operating the antenna in both the sum and difference modes simultaneously. Because of size limitations imposed on the antenna structure, the resulting radiation patterns provide a swath coverage and consequently result in modified inhibit action.

The band 3 c antenna is a double-bay turnstile element with a cross type reflector plane about midway between the turnstiles. Signal and inhibit functions are obtained by simultaneously operating the antenna in both the sum and difference modes.

A photo of an engineering model of the antenna configuration for the $\mathrm{F}-2$ (flts 3, 4) payload is shown in Figure 3-1, on-orbit and prelaunch positions being depicted.



Figure 3-1 Antenna Nest for F-2 (Flts 3. 4) Payloads

MISSILES and SPACE DIVISION

### 3.2 RECEIVERS

A block diagram of the F-2 (nte 3, 4) receivers is shown in Figure 3.2. These receiver are generally imilar to the $\bar{\xi}-2(F l t a 1,2)$ receiverim and the general deaign criteria a given in Section 2 for superheterodyne receiver apply. The amplitude comparator, however, has been modified to provide signal and inhibit video output and an "acceptable" pulse output to upply data that result in increased capabilities of the $F-2$ (flts 3, 4) payload. Since the band 1 receiver i the mame except for theme modifications, the description given in Section 2 not repeatedhere. The receivers for bands 3 b and 3 c are used for the firt time in $F-2$ (fits 3, 4) payloadm and are described below.

The receiver for each band provides the necesmary outputs to the datahandling circuits: namely, signal video, inhibit video, standard "accept," and acceptable pulses. The signal video pulse is umed for PW and amplitude measurements. Both the ignal and inhibit video pulses are used for amplitude difference measurements. The accept pulse is a standard 5- $\mu \mathrm{sec}$ pulse, generated when the gignal video amplitude exceeds the inhibit video amplitude by a preset threshold amount. The accept pulse is used for data handler control and PRF measurement. Acceptable pulses are supplied to the single-frequency sequential detector.

Preliminary receiver acan characteristics of the $F-2$ (fits 3, 4) receivers are hhown in Table 3-1.

### 3.2.1 Preselectors

Preselector design concept and the band preselector are discussed in paragraph 2.2.1. A general schematic of the lumped-constant type of preselector is ohown in Figure 3.3. In band $3 b$ the image attenuation is greater than 20 db , the bandwidth i 15 Mc , and the insertion $\operatorname{los} \mathrm{s}$ is less than 0.8 db . In band 3 c (Figure 3 -4) the image attenuation is greater than 20 db , the bandwidth is 10 Nc, and the insertion loss is 1 db .

Table 3-1
RECEIVER SCAN CHARACTERISTICS FOR F-2(FLTS 3, 4)SYSTEM

Total Band Switching Time: About 1.8 seconds
Total Cycle Time: About 13.8 seconds
in in in in in
NOISIAIO ZכVdS PuO S3IISSIM


64721-1.048

Figure 3-3 Schematic Diagram of Lurnped-Constant Preselector


46721-1-080

Figure 3-4 Schematic Diagram of Preselectors for Band 3c


MISSILES and SPACE DIVISION

### 3.2.2 Locai Oscillator

Band l local oscillator information is given in paragraph 2.2.2. Band 3b uses a type $2 N 1143$ transistor in an oscillator circuit, A vacuum tube oscillator circuit employing a GE 7077 triode is used for band 3c. Schematic diagram are shown in Figures 3-5 and 3-6.

### 3.2.3 Mixers

Mixer design concept and band 1 mixers are diacused in paragraph 2.2.3. A lumped constant mixer using ferrite cores for the transformer and hybrid circuits has been designed for use in the band 3b mixer (Figure 3-7). It has a 1.5 to 1 SWR in the $R-F$ band and requires 2 milliwatts of local oscillator power. The band 3 c mixer is a Tymingki. Hylas hybrid ring. Ferritetransformers are used to match the crystals to the ring. An SWR of better than 2 to 1 is achieved in this configuration shown in Figure 3-8.

### 3.2.4 I-F Amplifiers

Although the appearance of the $\log \mathrm{I}-\mathrm{F}$ gtrips usedin the $\mathrm{F}-2(\mathrm{flts} 3$, 4) receivers is similar to that of the trips for the $F-2$ (fits 1 , 2 ) receivers (see paragraph 2. 2. 4), some changes (to increase bandwidth) have been made in the circuits. The circuit used in this model of $I-F$ strips de the fefore shown in Figure 3-9. The bandwidth characteristics of the I-Ffilers are shown in Table 3-2. The filters aredesigned for 50-ohm ource and loadimpedance. The insertion loss is less than 5 db and the $S W R$ is less than 1.2 . At minimum insertion loss the response does not deviatemore than 0.2 db from a maximally flat (Butterworth) reaponae.

To help discriminate against purious responses in the gignal channel, it is desirable to make the inhibit channel bandwidth as wide as possible. For the inhibit channel, a notched filter is being considered as an alternate to the pass-band filter described above. This filter ( $60-\mathrm{Mc}$ center frequency) has the attenuation characteristics shown in Figure 3-10. Comparative tests on receivers with the two types of filters will determine which filter provides

4.47435-1.06;

Figure 3-5 Schematic Diagram of Band 3b Local Oscillator


447423-1.032

Figure 3-6 Schematic Diagram of Band 3c Local Oscillator
3-8

SECRET
MISSILES and SPACE DIVISION

4.742.4.0.03

Figure 3-7 Schematic Diagram of Band 3b Mixer


Figure 3-8 Schematic Diagram of Band 3c Mixer

NOIFYOdצOS LHVZDyIV O33HXDOI


$\ddot{B}$

Figure 3-9 Schernatic Diagram of Log I-F Strip For F-2 (FLTS 3, 4) Receivers


487623-1-056

MISSILES ana SPACE DIVISION
the more desirable performance. Characteristics of the preamplifiers and $\log$ I-F amplifiers are listed in Tables $3-3$ and $3-4$.

Table 3.2
BANDWIDTH CHARACTERISTICS OF I-F FILTERS FOR F-2 (FLTS 3, 4) BANDS 1, 3B, AND 3C

3-db Bandwidth
Signal
$(\mathrm{Mc})$
$2.5 \pm 0.2$

Inhibit (Mc)

60-db Bandwidth


Inhibit (Mc)

Center Frequency (Mc)
$60 \pm 0.4$

Table 3-3
CHARACTERISTICS OF 60-MC I-F PREAMPLIFIERS

Gain	$30 \pm 1 \mathrm{db}$
$3-\mathrm{db}$ bandwidth $13 \pm 1 \mathrm{Mc}$   Noise figure (50-ohm input impedance) 6 db   Saturation deviation with irpput of   -30 dbm $1-\mathrm{db}$ max   Response to $30-\mathrm{Mc}$ signal at -30 dbm   level 29 db below $60-\mathrm{Mc}$ signal response   Respone to $30-\mathrm{Mc}$ signal at -50 dbm   levei 30 db below $60-\mathrm{Mc}$ signal response	

### 3.2.5 Amplitude Comparator

The amplitude comparator indicates whether or not a signal originates within the desired region of coverage by comparing the amplitudes of the video pulses from the signal and inhibit channels. A difference bias determines the amount by which the amplitude of the signal channel pulse must exceed that of the iahibit channel pulse to produce an accept signal condition.

Table 3-4
CHARACTERISTICS OF 60-MC LOGI-F AMPLIFIERS

Input dynamic range	-70 to -10 dbm
Output dynamic range (video)	1 to 10 v
3-db bandwidth (I-F)	$8 \pm 1 \mathrm{Mc}$
Maximum deviation from log transfer characteristics at center frequency	0.1 v
Maximum deviation from log transfer characteristics at $60 \pm 2.5 \mathrm{Mc}$	0.2 v
Maximum tracking error of matched pair at $60 \pm 2.5 \mathrm{Mc}$	0.2 v

If the signal-to-inhibit amplitude ratio exceeds the threshold level, the comparator generates a $10-v$ acceptable pulse having a $P W$ equal to the interval during which the threshold is exceeded. The acceptable pulse initiates a $5-\mathrm{v}$, $5-\mu \mathrm{sec}$ accept pulse that can have a repetition rate not greater than one per $35 \mu \mathrm{sec}$. Thus several acceptable pulses can be generated for each accept pulse. The accept pulse, the acceptable pulses, and buffered video signal and inhibit channel pulses are the outputs from the amplitude comparator to the data handling and recording circuits.

The amplitude comparator (Figure 3-11) consists of a difference amplifier, Schmitt trigger, and blocking oscillator. The difference amplifier consists of Q1, Q2, and Q3, and will operate with 83 normally cut off by an amount equal to the threshold setting. The output of $Q 3$ is diode coupled to $Q 6$ which inverts and drives the Schmitt trigger circuit consisting of 07 and $Q 8$. The design of this Schmitt trigger is dictated by the dual requirements of direct coupling and referencing the output to ground. This output (the acceptable pulse) is then buffered ( 09 ) to drive a cable and differentiated ( 08 ) to drive the blocking oscillator. The blocking oscillator, having fired, is blanked by its own negative overshoot that holds its base negative for $35 \mu \mathrm{sec}$. This blanking periodis determined by R28, R29, and CR13.

3-13


SECRET

A delay network is inserted in series with the base of Q2. This network deays the inhibit video to the same extert that the signal video has been delayed in the signal channel pass-band filter, and degrades the inhibit rise time to match that of the signal video. Additional blanking inputs function ciuring band switching anci data handler reset periods.

Q4 and Q5 are the signal and inhibit cable drivers. The need for a low resistance to shunt the cable capacitance ( $150 \mu \mu \mathrm{f}$ ) together with the transistor power limitation, dictates the capacitance coupling ( $C 4$ and $C 5$ ) that limita the duty cycle capability to 15 percent. The generation of accept and acceptable putses, however. is independent of the duty cycle.

### 3.2.6 Frequency Encoder

The 9 -bit encoder used in all $\mathrm{F}-2$ receavers provides 512 frequency channels. The number of channcls required, however, depends on the bandwidth of each receiver. Band 1 receiver requires 280 channels, band $3 b$ recriver requires 64 channels, and band $3 c$ receiver requires 144 channels. Thefrequency encoder provides adequate frequency resolution. A description of the encoder is given in paragraph 2.2.7.

### 3.3 PAYLOAD DATA HANDLER

The payload data hander is a transistorized digital system that provides the necessary data handling functions required in the ferret equipment. The data hander examines the video pulses from the payload's ferret receivers and:
a. Determines the acceptability of the signals (verification) in those bands where verification is desired
b. Measures the pulse interval to determine PRE
c. Notes when variable PRF occur
d. Measures PW and pulse amplitude of signals
e. Notes when pulses longer than $32 \mu \mathrm{sec}$ have been measured
f. Reads out the frequency channel code from the shaft encoders in the receivers, and the frequency band code from the band code matrix
g. Notes the time of intercept

h. Nensires the difference in amplitude of signal and inhibit pulses
i. Notes reception of single frequency sequential pulses
j. Enpresses the above mformation in digital form-a 68 -bit digital wore

Figure $3-12$ is a simplifed block diacram oi the data handler, and Figure 3-13 shmos the disital word format. The data hander can be divided, according to function, into several sections:
a. Verricatun, PRE, and PW Measurement. This section determines whether lie sagal receivedisa valid intercept, and if so, generates binary words representing PW and PRF, or more correctly, pulse interwi. Figure 3-14 is the logic diagram for this section.
b. Conplement Counter. This section notes pulse interval difference to detect varation in PRF. If nonuniform PRF is detected, an alarm bit is generated. Eigure $3-15$ is a logic diagram of the complement counter. Figure $3-16$ is the timing diagram.
c. Frequency and Time. Foreach intercept, this section accumulates time bits, enables readout of frequency shaft encoders and readout of band code matrix. Figure $3-17$ is the logic diagram of this section.
d. Pulse Amplitude Digitizer and Amplitude Difference Digitizer. This stection measures the amphoude of the signal channel video signal and the difference between the signal and inhibit channel video signols. Figure 3-18 is the logic diagram for these units.
(*. Smele Frequency Seguminal. Upon detection of this special signal an alarm: bit is gencrated. Figure $3-19$ is the logic diagram for this unit.
f. Data Sampler and Reset Control. This section causes the stored bmiry data in the preceding circuits to be fed to the recording cirruits in serial order. Figure $3-20$ is the logic diagram for the sampler and control.
\&. Disital Recurder Control. This section controls the start-stoprecord cycles of the digital recorder, and shapes, combines, and distributes data pulses going to and from the recorder. Figure 3-21 is the logic diagram for the recorder control.
3. 3.1 Operation of Verification

In the bands where verification is used, accept pulses from the amplitude complirator are subjected to a verification test before their characteristics are recorded. This test prevents noise pulses that occasionally will occur from beint considered as received radar pulses. For a signal to be



Figure 3-12 Block Diagram of E-2 (Flts 3. 4) Payload Data Handler


$\begin{gathered} \text { YUABER } \\ \text { OF } \\ \text { BITS } \end{gathered}$	$\begin{gathered} \text { BIT } \\ \text { NUMOER } \end{gathered}$	
9	1-9	PFF-1
6	10-15	PULSE WIOYH
5	16-20	PULSE AMPLITUDE
3	21-23	AMPLITUDE DIFFERENCE
1	24	NONUNIFORM PRF
1	25	WIDE PULSE (>32 USEC)
1	${ }^{*} 26$	Single-frequency sequential pulse
1	${ }^{*} 27$	SIMULTANEOUS MULTIFREQUENGY PULSE
6	28-33	SPARES
9	34-42	PRF-2
13	43-55	TIME
9	56-64	FREQUENCY
3	65-67	BAND
1	68	PARITY
note.		
THE	SYSTEM	SETS ON CLOCK PULSES 69 AND 51
* THES	$\triangle R E$ SP	E BITS IN F-3a EQUIPMENT

Figure 3-13 F'-2 (Flts 3, 4) Digital Data Format

3-18

647423－1－060
Figure 3－14 Logic Diagram：Verification，$P R F$ ，and $P W$


i GATE

complement pulse


OUTPUT (t, + )


## 4474:3-1-062

Figure 3-16 Timing Diagram of Complement Counter

LOCKHEED AIRCRAFT CORPORATION




AISSILES and SPACE DIVISION
Figure 3-18 Logic Diagram: Pulse Amplitude and Amplitude Difference
134075
Approved for Release: 2017/08/17 C05100033

SECRET


Figure 3-19 Logic Diagram for Single-Frequency Sequential Pulse Detector




Figure 3-21 Logic Diagram: Controls for Recorders
recorded as an intercept, at least two pulses must be received within a period of time equal to the longest interpulse period expected in the particular band under investigation.

The verification times (one maximum pulse period) for the receivers are:

Band	Time   (milliseconds)	Minimum PRF   (PPI)
$3 b$	5	200
$3 c$	12.5	80
3	12.5	80

If a signal is not verified, the data hander is reset and prepared to accept the noxt signal. This verification technique, however, is not incorporated in bands where single pulses are processed. When the system is operating in the single-pulse mode, the receiver gain can be decreased to diminish the number of spurious noise signals. While operating in this mode, the equipment is capable of receiving frequency jumper type radars. This mode is not optional after the payload has been launched. The single-pulse mode op = eration requires a wiring change in the data handler prior to launch.

### 3.3.2 Measurement Cycle

3.3.2.1 PRF Measurement. The PRF measurement cycle consists of the measurement of the intervals between the first and second puises and between the second and third pulses. Two-pulse interval measurements are made to dotect either the presence of two or more radars within the frequency channel or PRF modulation. Additionally PRF measurement reliability is increased by the use of two counters. The equipment also generates (via the complements counter) and records unmatched PRF alarms when a second PRF measurement is not within l percent of the first (except for very short pulse intervals). The readout accuracy of the complements counter is shown in Table 3-5. In addition the equipment is capable of single - pulse opcration in selected bands for the purpose of detecting frequency-jumping radars that change frequencies from pulse to pulse. When the equipment is in

LOCKHEED AIRCRAFT CORPORATION
3-27
Table 3-5
READOUT ACCURACY OF COMPLEMENT COUNTER WITH $40-K C T T_{1}$ CLOCK

Largest $\mathrm{T}_{1}$ Courter Bit Acceptable for Range	Readout Control Bus Number	Range of $\mathrm{T}_{1}$ ( $\mu \mathrm{sec}$ )	$\mathrm{T}_{2}-\mathrm{T}_{1}$		Percent
			Difference Counts	Accepted Msec	
1,2,3,4	0	100-375	$\pm 2$	3.12	$6.2-0.84$
5	1	400-775	$\pm 4 / 3$	4.53	1.1-0.59
6	2	$800-1575$	$\pm 8 / 7$	10.9	1.4-0.69
7	3	1600-3175	$\pm 15$	23.4	1. $5-0.74$
8	4	3200-6375	$\pm 31$	48.4	1.5-0.76
9	5	6400-12,750	$\pm 63$	98.2	1.5-0.77

NOISIAIC ZOVAS Pub s3lissiw
Clock $=640 \mathrm{kc}$

## Approved for Release: 2017/08/17 C05100033

LMSD-477423
the single-pulse mode of operation and only one pulse is received during the maximum time inferval, the PRF-l counter is automatically reset at the end of the interval. The PRF counters operate with $25-\mu \mathrm{sec}$ increments with a maximum count of 12.5 milliseconds.
3.3.2.2 PW Measurements. The PW measurement is made on the first pulse, and when a second pulse occurs during the verification time, the width of the second pulse is measured. This second measurement will supersede the first. The PW counter has a measuring capability of $0.5 \mu \mathrm{sec}$ to slightly over 2 milliseconds. PW's between 0.5 and $31.5 \mu s e c$ are measured in 0.5 Hece increments by means of a pulsed $2-\mathrm{Mc}$ oscillator. If the PW exceeds $31.5 \mu \mathrm{sec}$, an alarm is generated and the 6 -stage counter is reset. Thenext count occurs at $50 \mu \mathrm{sec}$, giving greater accuracy in the range between 31.5 and $50 \mu$ sec where the pulses are likely to occur. The PW is then measured in $32-\mu s e c$ increments by a $31.25-k c$ pulsed oscillator. Pulses longer than 2.03 milliseconds register as 2.03 milliseconds. A schematic diagram of the oscillators is shown in Figure 3-22.
3.3.2.3 Pulse Amplitude Measurement. A pulse amplitude measurement is made to determine the signal strength of intercepted signals. The pulse amplitude measurement is made on the first pulse and when a second pulse occurs during the verification time, the amplitude of the second pulse is measured and the second measurement supersedes the first. The pulse to be measured is stretched and applied to one input of a voltage comparator while $1280-\mathrm{kc}$ clock pulses are applied to a counter input. The stages of the counter, control constant current drivers that feed a linearly-weighted ladder network whose output is a series of linearly-increasing voltage steps. These series of steps are fed to the other input of the comparator that provides a trigger pulse when the staircase amplitude equals that of the stretched pulse. This trigger pulse stops the counter whose binary content is proportional to the pulse amplitude.


## $\stackrel{\text { a }}{\text { a }}$

3-30

MISSILES and SPACE DIVISION
3.3.2.4 Pulse Amplitude Difference Measurements. Ameasurement is made to determine the difference between the amplitude of the signal channel video signal and the inhibit channel video signal of an intercept. The pulse amplitude difference measurement is made on the first pulse and if a second pulse occurs during verification time, the difference amplitude of the second pulse is measured and the second measurement supersedes the first. The signal and inhibit video pulses are fedinto a difference network which supplies a video pulse proportional to the difference. The pulse is digitized in a manner similar to that used in the pulse amplifier digitizer except at a 640kc rate.

### 3.3.3 Single-Frequency Sequential Pulse Detection

The logic diagram of a single-frequency sequential pulse type radar detector is shown in Figure $3-19$. Single sequential pulses are detected as follows. When an accept pulse is generated, an end-of-pulse trigger is produced at the trailing edge of the corresponding acceptable pulse. This trigger opens a $15-\mu \mathrm{sec}$ gate that samples the acceptable pulse. If at least one pulse occurs during each gate interval for three successive accept pulses, an intercept of the single-frequency sequential type is recorded.

### 3.3.4 Readout Cycle

The data handler's readout cycle is the interrogation of the counters containing intercept data, the serialization of these data, and resetting the measurement and verification circuits. A parity-check bit is generated at the end of this process and appears at the end of the data. After the intercept has been verified, the digital recorder is instructed to start, and is permitted toreach proper recording speed. The data then are interrogated and issued to the recorder's write circuits. The readout process is completed and the entire data handler is cleared.

The readout of the complete intercept word requires about 7 milliseconds. Because of this it is necessary to use two reset pulses in the data handler to meet the channel dwell time and scan rate requirements. Therefore, the

counter and circuits containing word bits 1 to 42 are reset by CP 51 and are prepared to receive new data. The counters and circuits containing word bits 43 to 68 contain parameters that do not change rapidly as a function of input signal and are reset by CP 69. Although the time counter is in the data handler, it is controlled by the satellite clock and continuously provides satellite time. The frequency encoder and band code inatrix are located in the receiver, and the power and control assembly, respectively, and provide continuous frequency and band information to the data handler.

### 3.3.5 Opeiation During Typical Intercept

Timing diagrams for those receiver bands using verification are shown in Figure 3-23. Operation is generally the same as that for the F-2 (fls 1, 2) equipment. One exception is that the pulse steering causes PW measurements to be made on the first received pulse. If a second pulse is received, the second pulse is measured and the second measurement supersedes the first. The parity bit for this data handler is bit 68. Clock pulse 69 resets part of the data handler. Other portions are reset by CP 51. Three milliseconds after CP 69 occurs the tape brake is actuated.

### 3.4 DATA STORAGE

The digital recorder model is that used in $F-2$ (flts 1,2 ) equipment. It is described in paragraph 2.4.

### 3.5 PAYLOAD CONTROL EQUIPMENT

The control functions are performed by the power and control assembly. It consists of the following subassemblies:
a. Redundant Electronic Timer - This unit controls the band switching cycle when any band drive motor fails.
b. Low-Voltage Fower Converter - This unit supplies $\pm 12 \mathrm{v}$ for the transistor circuits in the receivers and data handlers.
c. Internal Programmer - This unit generates the signals that place the start-stop words on the tape, and provides for receiver blanking during the recording of these words.

d. Test Generator - This unit provides test signals to check the performance of the receivers and/or data handlers.
e. Auxiliary Command Circuits - This unit contains circuits for controlling the recorder. It also contains the circuits for switching signals from one data hander to the other. Various minor functions including power monitoring points are also included in this unit.
f. I-F Preamplifier Gain Control - This unit permits the gain of each preamplifier to be changedin $1-\mathrm{db}$ steps. Eleven steps and one "off" position are provided.
g. Attitude Converter - The horizon sensor (not part of Subsystem F) measures vehicle attitude (pitch and roll) and supplies the data in the form of $\mathrm{d}-\mathrm{c}$ voltages to the Subsystem $F$ attitude converter. The converter transforms the d-c voltages into pulse format for digital conversion and recording on the digital tape.
h. Band Code Matrix . This unit provides a digital indication of the active scanning receiver.
i. Crystal Current Monitor - This unit is a set of magnetic amplifiers used for amplifying crystal currents to a level suitable for telemetering purposes.
j. Control Equipment - These units control the basic operation of the receiving and data handling equipment. The control equipment is operated by RTC's and SPC's supplied by Subsystem C\&C in the satellite. These commands, in the form of relay contacts, froduce the regured mode of operation.
3.5.1 Modes of Operation

There are five basic modes of operation of the $E-2$ (fits 3 , 4) payloads. The modes of operation are initiated by a succession of SPC's or RTC's. These modes are the same as those for the $F-2$ (flts 1, 2) payloads (see paragraph 2.5.1). The program of the internal test mode is necessarily different so that it will check out the F-2 (nts 3, 4) data handler. The four test phases of the internal test mode are:
a. Video signals of unequal $P R F$ are fed directly to the data handler.
b. A long pulse is fed to the inhibit chanrel at an amplitude 9 db below the corresponding signal fed to the signal channel.
c. I-F signals with unequal PRF are fed to the inhibit channel at an amplitude 9 db below the corresponding signal fed to the signal channel.
d. I-F signals of equal amplitude are fed to both signal and inhibit channels.


MISSILES and SPACE DIVISION

### 3.5.2 On-Of Control and Internal Programming

The F-2 (n: 3, 4) payloads are placed in the various operating modes by mean of SPC's or $A C^{\prime} C^{\prime}$. RTC' are used when the atellite is within range of a TAS. At othertimes, SPC' with proper time indexing perform the turn-off and turn-on operation.
3.5.2.1 Stored Program Commands. A list of SPC' required for this payloadim houn in Tavie 3-6. Six comanandmare required. Theme commands a-e et of relay contact that activate various portion of the equipment durang operation.

Table 3-6
PROPOSED STORED PROGRAM COMMANDS FOR F. 2 (FLTS 3, 4) PAYLOADS

SPC	
Numb	Function
1	Activate band 1
3	Activate band 3b
4	Activate band 3c
6	Diydtal tape tranmport forward
7	Ready receivera
8	Recelve cycle on

3.5.2.2 Real-Time Commande. Aliwt of RC'mand their functionerequired for thi payload is hown in Table 3-7; thirteen command are required. These commande are et by relay contacte that almoctivate portions of the ferret equipment when the eatellite is within range of TAS.
3.5.3 Tret Sional Cenerator for F-2 (Flt: 3. 4) Payload

Ftim lntornal teating of the forret equipment is accomplithedin four modea w:h hrec RTC'm. RTC-9 uppleam 12 vto the circuit andim on during all


Table 3-7
PROPOSED REAL TIME COMMANDS FOR F-2 (FLTS 3, 4) PAYLOADS

RTCNumber	Function
	Readout
2	Motor drive forward
3	Motor drive reverge
4	Preamplifiev select
5	Gain adjust
6	Ready receivers
7	Receive cycle on
8	Spare
9	Testgenerator on
10	Test generator control a
11	Test generator control $b$
12	Spare
13	Activate all bands

four modes of operation. RTC-10 and RTC-11 are used to activate various relays. A block diagram of the test signal generator is shown in Figure 3-24. Mode 1 is initiated by RTC-9 and RTC-10. Unequally spaced $10-\mu \sec$ video pulsen are sent to the data handler. This is accomplished by triggering both a $10-\mu \mathrm{sec}$ and a $640-\mu \mathrm{sec}$ monostable multivibrator. The 10 - $\mu \mathrm{sec}$ pulse is fed directly to the data handler. The trailing edge of the $640-\mu s e c$ pulse triggers the $10-\mu s c c$ monostable multivibrator, thus sensing a lo-psec pulse to the data handler $640 \mu \mathrm{sec}$ later. This is repeated at a $400-\mathrm{cps}$ rate. Besides testing the data handler, these pulses also generate the nonuniform PRF ignal, thus providing a test for that alarm.

Mode 2 is initiated by RTC-11 and RTC-9. During this test only the 640-pece monostable multivibrator is triggered. The pulse is modulated by the 60-Mc oscillator and fed to the signal and inhibit channels of the receivers. Aside from testing the receivers, the amplitude comparator, and data hander, this mode tests the long-pulse alarm. RTC-9 initiates mode 3. The same wave shape as used in mode 1 is generated, except that in mode 3 , it modulates the $60-\mathrm{Mc}$ test oscillator and is sent into the receiver 1 -F strips.

LOCXHE:D A:CRAFI CORPORATION



missIIES ond SPACE DIVISION

Mode 4 is similar to mode 3, except the relative attenuation will be such that the signal should not pass through the amplitude comparator. This mode is accomplished by the use of RTC-9, RTC-10, and RTC-11.

### 3.5.4 Internal Programmer

The operation of the internal programmer (Figure 3-25) is the same as that for $F-2$ (flts 1, 2) payloads as described in paragraph 2.5.2.4.

### 3.5.5 Redundant Band Switching

Two methods of band switching are used in F-2 (fits 3, 4) payloads. In the primary method (Figure 3-26), the motors themselves via the encoders start and stop each other in rotation. The end of the scan of one band will start the scanning of the next. In the secondary (redundant) method, initiate pulses are generated by a 4 -stage binary counter that is triggered by the $1-s e c o n d$ satellite clock. The use of the l-second clock for the redundant system requires that the time in each band be rounded off to the nearest second. The counters are uplated once each cycle. This updating or reset comes from either the counter, the end-of-scan signal from the last band, or from the initial reset of the data handler. These inputs are OR gated, and trigger a monostable multivibrator that resets the counter.

The initiate signal normally comes from the end-of-scan signal of the previous band; however, this signal is OR gated with the initiate signal from the counter. The initiate signals from the counter always arrive after the initiate signals from the encoders, except when there has been a failure in one of the motors. In such cases the counter takes over for the band that is to begin scanning. Initiate pulses then start the band drive motor and apply power to the band. The end-of-scan signal of one band starts the next band and shuts off the power controller of the first band. The motor controller of the first band is turned off upon completion of one code wheel rotation (returning the motor to zero positionl. Stopping is aided by a solenoid-driven brake. If motor failure causes the repeat cycle timer io take over the initiate function for one or more bands, the total time required for a 4 -band scan cycle is



Figure 3-25 Block Diagram of Internal Programmer



[^3] LMSD-447423
somewhat increased, and the area of multiple intercepts and the transverse coverage are slightly reduced. Otherwise system capabilities are not affected.

### 3.5.6 Receiver Control Operation

This operation is for a typical receiver requiring a special power supply for the operation of a local oscillator. The initiate pulse from the SPC latches the power controller and motor controller. The power controller applies power to the local oscillators, I-F amplifiers, and amplitude comparator. The motor controller applies $400-c p s$ power to the band scanning motor and disengages the brake from the motor shaft. The digitizer (shaft encoder) presents a continuous indication of the angular position of the motor shaft. The sensors send start and finish signals to the amplitude comparator unblanking circuit. The output of the amplitude comparator unblanking circuit is sent to the data handler to energize the proper verification circuit. The output of the amplitude comparator unblanking circuit is also sent to the band code matrix, through a transistor inverter.

The output of the digitizer is sent through a switching circuit that is activated by the amplitude comparator blanking circuit and the delay multivibrator. A 9 -bit corde is then sent to the data handler. In addition to the 9 -bit code, which indicates a channel number, a band code matrix transmits a digital code to the data handler to indicate the receiver which is scanning. The code used is shown in Table 3-8.

### 3.5.7 Power Supplies

The power available from the auxiliary power supply does not fill all the needs of the ferret equipment. It is necessary, therefore, to provide lowvoltage regulated power supplies for transistorized circuits, and a high voltage supply for vacuum tube local oscillators. The primary considerations in the design of these supplies are overall efficiency, minimum size and weight, and high reliability.

LCCKHEED AIRCRAFT COPPORATION


MISSILES and SPACE DIVISION

Table 3-8
RECEIVER CONTROL CODE FOR E-2 (FLTS 3, 4) RECEIVERS

Band
Receiver blanked by internal programmer

1
3b
3c
Between bands

Code
000

001
011
100
111

The payload equipment will require the following voltages for proper operation.
a. 115-v, 400-cps three-phase
b. 115-v, 2-kc single-phase
c. +28.3 v regulated
d. -28.3 v regulated
e. +28 vunregulated

### 3.5.8 Attitude Converter

The digitization of attitude data is the same as for $F-2$ (fits 1 , 2 , see paragraph 2.5.4). Since the $F-2$ (flts 3, 4) payload uses a 68 -bit word, the placement of the attitude data in the word is different.

The specifications for the attitude converter are as follows:
a. Range of input level
b. Digitization range (bits)
c. Accuracy
d. Sweep accuracy
-5 v to +5 v
24 to 68 at 40 kc
$\pm 0.25 \mathrm{v}$ at 40 kc
$\pm 0.5 \mathrm{v}$

3.5.9 Monitoring Control

The payload will provide, for transmission to the TAS via Subsystem C\&C, various test data describing the operability of selected components of the ferret equipment.

The philosophy for selection of the monitoring points is a compromise between equipment complexity and monitoring sufficient to sense failures.

## SECTION 4

PAYLOAD CHECKOUT EQUIPMENT

### 4.1 GENERAL INEORMATION

The $F-2$ checkout equipment provides the means for easily evaluating the performance of $F-2$ payload equipments as well as for calibrating and assisting in their maintenance. The checkout equipment will be used for final inspection and acceptance tests of the $F-2$ payioads. After installation of the Subsystem $F$ payload equipment, the checkout equipment will be used for all tests before system checkout. The operator of the checkout equipment will be able to determ, ne impending, as well as actual, failures by analyzing a permanent recording of all measurements. For detailed examination of any particular circuit in the payload, manual control is provided for both payload and checkout equipments.

Subsystem $E$ checkout is performed independently of all other subsystems both before and after the Subsystem $F$ payload is installed in the satellite. The checkout equipment supplies all functions normally supplied to Subsystem F by other subsystems. All cabling from Subsystem F to other subsystems is connected to the checkout equipment for the tests.

The evaluation of the payload is performed through two sets of recorded measurements called, respectively, static tests and dynamic tests.

The static tests consist of two groups. In group one, the checkout equipment automatically monitors a large number of d-c or low-frequency a-c potentials in the payload that are indicative of the performance of power supplies, mixer crystals, digital circuits, and other like circuits. In group two, a pulsed I-F signal generato: located in the payloadis activated, signals are fed to the receivers, and selected d-c potentials are monitored. These potentials are indicative of the performance of the preamplifiers and $\log I-F$ strips of the receivers.


For the d-c checkout voltages, go/no-go indications are provided. For volt = ages that vary as a function of time, such as crystal currents and bandswitching signals, a pen recorder is used as the indicator. The go/no-go monitored voltages are recorded by the digital printer. Both records are available to the operator for analysis and for location of actual and impending failures.

During the dynamic test sequence, the checkout equipment automatically generates and injects radar-like $R-F$ signals into the payload for a fixed number of test scans. The payload, when placed in the ferret mode of operation, processes these signals like an actual intercept. After the parameters (frequency, $P W$, pulse period, and time) of the signal are permanently atored on tape in the payload recorder, the data are read out into a data handler in the checkout equipment. The data (read out in a binary form) are converted to a decimal form, are appropriately scaled, and are then printed on a digital printer. An operator will therefore be able to evaluate the payload performance by a comparison of the printed data and the known input data. If desired, the automatic test can be followed by manual operation of the equipment for the purpose of localizing any fault to below-the-component level.

The four-cabinet assembly that comprises the checkout equipment is shown in Figure 4-1. The major units of this equipment and their general tegt functions are as follows:

Unit Name
Master Control
Monitor 1
Monitor 2
Dual Pen Recorder
Digital Voltmeter
Dynamic Test-Control Unit (DTCU)
Signal Source Band l
Modulator Band 1

General Use

All Tests
Static Test
Static Test
Static Tests
Static Tests
Dynamic Test Programmer
Dynamic Test
Dynamic Test


Figure 4-1 F7. Checkout Equipment
4-3

Figurę-1 F2 Checkout Equp
i. LOCKHEED AIRCRAFT CORPORATION

SECRET
MISSILES and SPACE DIVISION

## Unit Name

S14nal Source Band 2
Modulutor Band 2
Data Handler 1. 2. 3
Programmabla Power Supply
Signal Source and Modulatore Band 3b, 3c

Anterna Adapier
Manumb Tat Unit
Command Indicaior Panel
Junction Box
Digital Recorder
Ten Box ind Dummy Load Unit (TBDLU)

## General U*e

Dynamic Tet
Dynamic Tent
Dynamic Test
Dynamic Tent
Dynamic Test

Dynamic Test
Manual Test
Manual Teit
Static and Dynamic Tewt
Siatle and Dynamic Tet
Checkout Connole Teet

A block dimpam of the F-2 checkout equipment in hown in Figute 4-2.

## 4. 2 DESCRIPTION OF BLOCK DIAGRAM

By monn of the TEST SELECTOR witch on the mater control unit, the operstor electether STATIC or DYNAMIC and then prewew the START TEST bution to tart the elecied mutomatic temt.

During the state tet program the payload im commanded, througha programmed combination of RTC' or SPC' 1 , Into li. TEST mode of operation. The bend witching elgnele fed back from the payload through monitor ldur Ing the iurn-on equenc atomatically et the checkout equipment for operallon with the particular group of bend prement in the payload under test.

Themontored payload voltage are analyzed in the monitor unit and recorded by ither the digital printer or pen recorder. The printed format (Figure 4-3)

 CO) that might dameg the paylond equipment or affect other meawuremente top the iatle fer and remove mil power. No-go indication (amber NO-GO)




Flgure 4-3 Digtal Record Print Format for F-2 Checkout


MISSILES and SPACE DIVISION
in any of the non-critical check points will not stop the test program. A ingle NO-GO indicator shows out-of-tolerance conditions for all amber NO-GO points. The point or points that show NO-GO are located by looking at the printed record.

After completion of the static test, a signal from the monitor unit through the master control unit turns off the payload equipment.

During the dynamic test program the payload is commanded into the RECEIVE mode of operation. After the warmup period, a signal to DTCU from the master control unit will permit the dynamic test to proceed. This will occur after the first complete band gate of a chosen sequence is received from a circuit located in the monitoring unit. The order of injection of signals into the payload is programmed to permit a definite order of processed output data for ease of operation analysis. During the warmup period, the DTCU also sets all preamplifiers in the payload to a preset gain. The DTCU controls all modulator units of the signal generator in the course of the dynamic test and commands the modulator units to change the modulation characteristic each time the control-band pulse is received. The modulation is changed for each of the 20 scans comprising this portion of the test. The simulated satellite clock pulses are also injected during this test, so that the time recorded for the firsi and succeeding intercepts is known. After the 20 scans, the ferret receivers are de-energized through the master control unit on a signal from the DTCU, and the payload is automatically commanded to read out on the printed record (Figure 4-3), seven numbers, corresponding to parts of the binary word and the number of bits in the word, are sequentially printed. Each print whecl has twelve positions: numerals 0 to 9 , a blank, and a dash line. Dash lines in the columns used for the static test indicate no-go for the test voltages. Dash lines in the columns used for the intercept word indicate a non-parity check.

When all information is read out, the master control unit will be activated by a feedback payload signal to de-energize all power to the payload.
lockheed arcraft corporation


MISSLIES and SPACE DIVISION

Upon completion of the semiautomatic portion of the tent, the recorded data of the dynamic test may be analyzed for determining the status of operation of payload functions. Should any questions exist an to the operation of any particular portion of the payload, the manually operated commands, in conjunction with the manual control of the checkout equipment, can be used for diagnostic purposes. In this mode of operation, the checkout equipment, in conjunction with external test equipment, will assist in locating fault in any component of the payload. The manual mode of operation may be used for additional application of the checkout equipment in fault location, maintenance, and adjustment of various payload functions.

## 4. 3 MASTER CONTROL UNIT

The master control unit contains the payload power-distribution circuits, controls the test programs, and supplies the commands normally supplied via Subsytem C\&C. All interconnections between units of the checkout equipment are made through the master control unit, except where physical limitations and circuit considerations dictate otherwiae. A block diagram of the master control unit is shown in Figure 4-4.

### 4.3.1 Power Distribution

The primary power required to operate the checkout equipment is 2 kilowatt at $115 \mathrm{vac}, 60 \mathrm{cps}$, single phase. The checkout equipment supplies the following voltages to the payload:

$$
\begin{aligned}
& +28 \mathrm{v}, \text { unregulated } \\
& \pm 28.3 \mathrm{v}, \text { regulated } \\
& 115 \mathrm{v}, 400 \mathrm{cps}, \text { three phase } \\
& 115 \mathrm{v}, 2 \mathrm{kc} \text {, aingle phase }
\end{aligned}
$$

All power for the payload is applied through protective relay Kl of the master control unit (Figure 4-4). If any of the payload power supply voltages are out of tolerance, limit meterm M1, M2, M3, M4, and M5 cause relay K2 to latch and prevent Kl from closing.

IOCKHEED AIRCRAFT CORPORATION


MISSILES ANS SPACE DIVISION


Relay K2 also latches when the main power is turned on, so that before K1 can be closed by closing the START TEST pushbutton switch, it is necessary to unlatch K2 by pressing the SUBSYSTEM POWER pushbutton switch. If any critical voltages fall out of limits in the static test program. K2 latches. thereby interrupting both the static test sequence and the payload power supply.

An interlock system prevents damage to the equipment due to accidental operation of any of the manual switches during automatic operation and ensures that the automatic testing cannot be initiated when any of the manual switches are in use. When no manual command is activated, the interlock relay is ener gized and the power circuit to the master control unit for the automatic test mode of operation is closed.

### 4.3.2 Test Selection

Selection of either the static or dynamic test program is made by etting the TEST SELECTOR switch (S4) in the DYNAMIC or STATIC position before pressing the START TEST button (S3). This selects the units in the checkout console to be activated during the test. Several internal changes in circuit logic ate also accomplished through 54.

### 4.3.3 Simulated Commands

The master control unit contains relays that simulate the SPC'sar: $\mathrm{RTC}^{\prime} \mathrm{s}^{\prime}$ that are normally supplied to the payload by Subsystem C\&C. These relays are interlocked to prevent improper sequencing of commands. Upon initiation of a static or dynamic test, the payload is activated in the desired mode of operation. A signal initiates either the monitor unit for the atatic test or the signal generators for the dynamictest. During the course of either test there is a flow of signals from various units in the checkout equipment to the master control unit, which witches in appropriate payload commands. The various checkout units also send completion signals to the mater control unit which switches both payload and checkout equipment to the next phase of the test.


MISSILES and SPACE DIVISION

### 4.3.4 Description of Master Control Unit During Dynamic Test

Closure of 53 (START TEST button) latches Kl , which applies power to the payload. K3, K4, and K5 are also activated, placing the receivers in the READY mode (RTC-14, SPC-6, and SPC-7). A signal is also generated to set the DTCU to the zero scan position. After a 70 -second delay, K6 closes, activating the RECEIVER cycle (SPC-8) and latches $K 7$ and $K 30$. Signals sent through K7 to the DTCU permit the band gates fed back from the payload to control the generation of $R-F$ signals and to remove the ZERO scan signal. A READY signal is also sent through $K 7$ to the data handler, which disconnects calibration circuits and switches the payload digital output to the data handler input. Relay K30 turns off the digital voltmeter. Because the same digital recorder is used for both the static and dynamic tests, and the output of the digital voltmeter is permanenfly connected to the input of the recorder, it is necessary to disable the voltmeter. The band gates now step the $R-F$ program through the appropriate test scans in the DTCU. Upon completion of the 20 R-F scans, a signal from the DTCU latches Kll, which opens K6 and turns off the RECEIVE cycle (SPC-8 and RTC-14). K11 also activates a $10-$ second delay circuit, which energizes $K 12$, removing SPC-6 and SPC-7, and completing the turnoff cycle

With the TEST SELECTOR in the DYNAMIC position, closure of Kl2 per forms two other functions. First, it applies power to the front end and back end of tape drivers Q1 and Q2, which activate Kl3 and K14 (front end and back end of tape relays) by signals from the payload. Second, it activates K16 (RIC-3 tape motor reverse) and after a five-second delay, it activates K18 (RTC-1 readout).

The payload is now in the NORMAL READOUT mode of operation. The tape runs to the front end, at which time the relay Kl3 sloses and is latched. K13 removes RTC-1 (readout) and activates Kl9 (forward readout delay), which activate K17, RTC-2 (motor drive forward). The tape motor is now running in the forward direction with the capstan deactivated. Kl3 also sends a signal to the data hander unit; this starts the data processing cycle. During the

processing, the capstan START and STOP signals are under the control of the checkout data handler.

After the last word on the tape is processed, the capstan START signal causes the tape to run to the back end, enabling the tape-end signal to latch K14 (back end of tape relay). Since the tape may come completely filled with a test word, the processing of the data will continue through the entire tape. The time of processing could last 2.5 hours with the same information being processed after the dynamic test information has been procesaed. To prevent excess time of processing, a timer in the data handler unit will hold the capstan start signal in after one-half hour of processing, again causing the tape to run to the end enabling the tape-end signal to latch K14. K13 is consequently unlatched and the payload again put into the first readout mode of operation (RTC-1 and RTC-3, activating K18 and K16). The tape runs to the front end, at which time Kl3 closes. Because $K 18$ is closed, contacts of Kl3 in series with Kl4 energize Kl5, which is the TEST OVER relay. This relay is latched through its own contacts in series with $K 7$ contacts (static and dynamic test power latch). This ensures the opening of $K 7$ before $K 15$ is deenergized, thus preventing a flip-flop action in the turnoff circuit. Power is removed from all previously self-latched relays, and Kl is de-energized, removing payload power.

### 4.3.5 Description of Master Control Unit During Static Test

When the START TEST switch (S3) is closed, with the TEST SELECTOR switch (S4) in the STATIC position, Kl latches and applies power to the payload. When Kl is activated, K3, K4, and K5 are also activated, placing the receivers in the READY mode (RTC-14, SPC-6, and SPC-7). After a 70second delay, Kó closes, activating the RECEIVE cycle (SPC-8), and latches K7 and K30. Signals sent through K7 permit activation of K13 which switches the voltmeter and printer into the static test mode of operation. The voltmeter sampling circuit is connected externally to the monitor unit and the print command loop is closed.


MISSILES and SPACE DIVISION

Closing 57 activates the monitor unit. During the progress of the static test, signals from the monitor unit latch and unlatch combinations of $K 21$ through K26 (400-cps power on-off, RTC-9 through RTC-13) and activate K27 through K29 (RTC-8, RTC-15, SPC-1 through SPC-5). These switch the payload equipment to the mode of operation necessary for the particular test in progress. K2l stops the band motors by removing the 400 -cps power and momentarily activating the motor brake by interrupting 28 -volt power to the satellite. This procedure stops time-varying voltages and simplifies testing.

A signal from the monitor at the appropriate time activates K 11 (SPC-8, off) to turn off the receivers. Kl2 closes through Kll, completing the turnoff procedure. It is necessary to activate K19 and K20 from the monitor for for ward or reverse readout. With $S 4$ (TEST SELECTOR) in the gtatic position, S4 also disconnects K13 and K14 (start of tape and tape end relays).

When $K 20$ is activated by the monitor, for an activity test, K16 and K18 are activated, and the tape runs toward the front end. K19 is subsequently activated and switches to the second readout mode ( $R$ TC-1 and RTC-2 activated).

At the completion of the monitor test, a signal from the monitor actuates Kl5, unlatching all relays and turning off all power through $K 1$.

## 4. 4 MONITOR UNIT

### 4.4.1 General Description

The monitor unit has seven basic functions:
a. Provides the means for monitoring and recording the payload telemetered d-c and time-varying voltages
b. Incorporates a voltage comparator that makes comparisons of the monitored voltages on a golno-go basis
c. Enables complete testing of all payload functions to determine the correctness of payload performance in all modes of operation
d. Determines from payload signals which bands are in operation and then automatically switches on the appropriate functions in the checkout equipment

LOCKHEED AIRCRAFT CORPORATION


MISSILES and SPACE DIVISION
e. Supplies signals for activation of payload commands through the master control unit (dependent on the particular test in progress)
f. Stops automatic test sequence when critical voitages are out of tolerance
g. Provides a manual calibration mode of operation in which tests of checkout equipment power aupplies, reference voltages, and test points from both payload and checkout equipment can be performed

A scirematic diagram of the $E=2$ monitor unit is shown in Figure 4-5. The monitor unit is divided into two main subassemblies, monitor 1 and monitor 2. Monitor 1 contains all calibration switches; one stepping relay switch; all relays necessary to the performance of a test; and the voltage comparator. Monitor 2 consists of eight stepping relays and about 200 potentiometers which are used to set limit voltages for the comparisongo/no-go testa.

A digital voltmeter, printer, and pen recceder are also used in the monitoring system.

### 4.4.2 Stepping Relay Functions

Since the number of monitored voltages is approximately 220 , nine stepping switches are employed to form a 225 -position, 12 -pole switch. Bank A of each switch is used to sequence between switches. Banks C, D, and E are connected in a matrix, which denotes position of the switch in decimal form by means of 10 -wire-per-digit ontput. The decimal position is displayed on a visual readout and is printed by the digital recorder during test.

Banks $K$ and $M$ switch the voltages from the limit potentiometers to the comparator. The test voltage is switched in by Bank L. Banks F, G, H, and J are used to activate switching functions necessary during the course of a test. This includes activation of combinations of payload commands through the master control unit, and changes in internal programming necessary during a test.

LOCKHEED AIRCRAFT CORPORATION



## 4. 4. 3 Preentaiton of Simitc Teir Deta

The teet voliage from thepayload are conversed to 10 -wioper-digit dectmal code by the digital voltmeter for preatention by the diglal recorder. In eddition to printing the teit voltagen, the number of the teitioprinted. A destlin if printod to denoteny volte the: fe outgide of premetlimite.

The dund-chmonel pen recorder imeed to recordrecelver crymol curyente.
 cryalal currente. Since two eparatecrytal currentememonliored in ench band, Ifnalfom Bank $H$ of the atepping witche from fignalandelnhtblt
 Duzi marker pen ircicate the bande and cryetal currente being monitored.

### 4.4.4 Voltage Comparator

The voliage comparmior it ued to determine whetter monltored voltage it whinnpreefllmita. The comparator momilier fa duad-channel yiem fed by $60-\mathrm{cp}$ equare-wave voltage which ate generated through the operating ctrcult of relay K32. One channel is ued to provide range botween the high limit and the montored voltage and the other chamel lit ued to provide rangem between the low llmit and the monttored voltage. The 60-cp equare wave meamplifled and mixed, no the remblant voltage timpplied to the contact of the go/no-go relay (K33).

The firt et of contacte of relay $k 39$ i used to apply a ground to energize the blank petni wheel or the dash print wheel on the digital recorder. A blank denotem GO anda danh denctes NO-CO.

In the cane of whin-limlte voltage (go), the two quare wavemare thenase, and K33 lenerglzed. Thefirt met of contact thereofenergize the blank printing wheel, and the recorder print a blank whichindicatem GO. The mece ond et oi contaction 333 breake the -28 v If nal to K 8 , which disables the red and amber no-golighte. The third et of contact on K33 feused to


MISSILES and SPACE DIVISION
monitor the TAPE END ignal. In monitoring poaitions 220 and 221 a mepping witch energize KS which in iurninterruptime ramdout pulaea and trenter them to the comparator witching contact of the relay and, accordingly, nc printing resultion during tupe tranait.

At elther end of the tape, the go pule from the tape, via the comparator, cauta the monttoring to begin again in the normal equencing procedure.

In came of an out-of-limite voliage, the two quare wave are out of phame and mink le printed on the recorder through the correaponding firet et of $K 33$ contict . The corresponding econd et of contact pute -28 v ignal through the no-go actustor to the red-amber NO-GO elector. If the out-oflinite voltage in critical voltage, the red light will go on indicating a No. GO, K6 latchea, and a ifril if ent to the mater control untt to dieconnect all payload power. For mon-critical no-go condition, where contmumtion of the tefing it defred, BY-PASS NO-GO ignal if fed to K2, removing the red NO-GO and the STOP MONITOR aignal. The third eet of K33 contactix now open end the normel readout pulem appear at the voltmeter external read Input.

### 4.4.5 Check of Payload Command

Tho command witching for the tatic test program 1 whown in Tmble 4-1. During the progresm of the matic testa, lt is necessary to activate farticular combination of RTC' and SPC'm prior to actual teat procedure. Far ex= wriple, the payloadI-F test generator mut be activated to check the $I-E$ amplifiere.

Signalmare ent from the mepping selay to the master control untt to excito the appropriate control circuite which activate the payload command relaym. The telemetered point from the payload corretponding to each command in monitored after each commandimactivated. Golndication for the telemetored polnt effectively check the operation of all payload command functione with the exception of the gain mdjumtment and the readout controle.

Test	Payload   Number

0

$\begin{array}{ll}1-8 & 12 \overline{2}-127 . \\ & 119-120\end{array}$

$$
119-120
$$

NOISIAID 3DVdS puv s3lissiw

Commands or Switching Activated by Programmer Prior to Test Performance

Latch RTC-14, SPC-6, SPC-7, and SPC-8. Step monitor stepping switch to zero position and activate monitcr. Unlatch all latching relays in monitor.

Connect Signal A and Inhibit A crystal currents and Band ON markers to pen recorder

## Remarks

Commanls and zero set are actuated in control and programmer unit. This places receivera in the normal ferret mode of operation and initiates the static test.
One crystal from each balanced mixer is monitored on a single wire designated "A" - the other as "B." "A" is continuously monitored fcr the first half of the statictest. 'B' is monitored after tesi" A.
For tests numbered $1-24$ sequencing will stop at a no-go, necessitating repair of faults before proceeding.

Test   Mumber	Payload   Test Points
	$133-135$   $128-132$



26, 27 RTC-6\&RTC-
7 arm
$28-47 \quad 20-39$

48-49
139-140
-

Commands or Switching Activated by Programmer Prior to Test Performance

## Latch RTC-9

Connect stepping switch io sequence through remainder of points indicating but not stopping at a no-go

NOISIAIG ZכYdS pue szilssiw
Prore

## Remarks

Test checks parallel connection of RTC and SPC and isolation diodes between SPC-1 to SPC-5 and RTC-14. For points 133 135. RTC-6A is normally open.
For points 128-132. RTC7A is normally open.

Preamplificr gain set to normal position in gain control unit before the test is initiated

Each time receivera are stopped in a band, BAND ON pulse is used to disconnect RTC-14 and the 100 cps power from the band sweep motor. This enables static terting of the time-varying voltages.


Table 4-1 (contd)


	Test Number	$\begin{gathered} \text { Payload } \\ \text { Test Points } \\ \hline \end{gathered}$	Table 4-1 (contd)   Commands or Switching Activated by Programmer Prior to Test Performance
$\begin{aligned} & \frac{2}{3} \\ & \underset{0}{2} \end{aligned}$	131-135	$\begin{aligned} & 42,12,17,47, \\ & 57 \end{aligned}$	
\%	136	Spare	
3	137	75	
	138	Spare	Latch RTC-8
	139	75	Latch RTC-11
	140	47	
	141	Spare	Latch RTC-12
	142	47	
	143	52	
	144	RTC-7B normally open	Start receivers sweeping
	145	RTC-7B normally open	Stop receivers in band 3b
	146	48	
	147	53	
	148	7.5	

Table 4-1 (contd)

Commands or Switching
Activated by Programmer Activated by Programmer
Prior to Test Performance
Piorto Tesl Performance

Unlatch RTC-8 and RTC-12
Unlatch KTC-11

Start receivers sweeping
Stop receivers in band $3 c$

Checks gating multivibrator in data handler $A$, band 3 c

Latch RTC-8
Latch RTC-11

Latch RTC-12

## Remarks

Checks gating multivibrator in data handler $A$. band 3b

## Checks gating multivibra-

 tor in data handler $B$. band 3 cTests 170 and 172 check inhibit function, band $3 c$



The gain adjust controls are checked during the dynamic test. The telemetered points corresponding to gain positions are monitored and recorded.

The readout control circuits are monitored for correct operation during tests mumbered 220 and 221 of the static test program.

## 4. 4.6 End Signals

A signal $\therefore$ m the stepping switch to $K 5$ (tape test relay) changes the monitor readout circuit to read on a signal through K33 in the go position. The voltage monitored is the tape front-end or back-end signal. Since the comparator will be in a no-go state until the tape reaches the end, contacts of K5 are used to prevent activation of the no-go relay.

### 4.4.7 Band Gates

The band gates generated in the payload are the inputs to d-c amplifiers A4 through A8. These pulses drive BAND ON relays K18, K19, K20, K30, and $K 31$ through transistors Q1, Q2, Q3, Q4, and Q5. Contacts on the BAND ON relays are used (a) to generate markcrs for the pen recorder, (b) to generate signals for controlling the sequencing of the DTCU, (c) to generate band stop signals, and (d) for switching the checkout equipment for operation with different combinations of bands.

### 4.4.8 Monitoring of Time Varying Voltages

The payload receiver scan motors are stopped in each band to monitor all of the test voltages that are on only with the band in operation. A signal from the stepping relays latches one of the BAND STOP relays, K 13 through Kl7. K3, the DELAY PRINT RELAY, is also activated each time any of the BAND STOP relays is activated. This interrupts the test cycle. Contacts of the BAND STOP relays $K 13$ through $K 17$ are connected in series with contacts of the BAND ON relays $K 18, K 19, K 20, K 30$, and $K 31$. The signal through the erd gate of the BAND STOP and BAND ON contacts is fed to the master control unit to stop the receivers in a band. The delayed print relay

IOCKHEED AIRCRAFT CORPORATION


K4 is also activated by this signal. This relay now bypasses $k 3$ to applya timing pulse to continue sampling of monitor points. After all time-varying voltages in a band have been recorded, $K 3$ and one of the BAND STOPrelays is unlatched, returning the payload equipment to normal ferret operation.

### 4.4.9 Switching of Checkout Equipment

The checkout equipment is designed for five-band operation. Several awitching operawons must be performed, therefore, to accommodate the particular combination of receivers in the payload under test.

The BAND-ON signal pulses indicate the combination of activereceiver bands in the payloadat a particular time. The pulses latch the band indicator relays (K35 through K39) which perform the required switching for adapting the checkout equipment for operation with the particular combination of bands in the payload.

Two sets of contacts on each of the indicator relays switch the ADVANCE and ADVANCE ENABLE sigrals to the DTCU.

The ADVANCE signal is generated by the BAND-ON pulse from the first rem cover band active in the payload at the particular time. The ADVANCE E NABLEsignal isgeneratedas a result of the absence of the same BAND-ON pulse. A signal from relays K35 through K39is also supplied to the DTCU to switch the timing circuits.

### 4.4.10 Manual Calibration of Monitor Unit

Prior to activation of the automatic test, the digital voltmeter input is connectedthroughcontacts on relay Kl to the arm of switchSl, the VOLTMETER INPUT sclector. This enables selection and measurement of number of criticalvoltages in the checkout system. In addition, one position of 51 allows selection of all power supply voltages for monitoring inrough another switch on the power supply unit. S2 and S3 (Step), in conjunction with the Nixieindicators, permitmanualsequencing of the stepping relays to any test position. When the Nixie readout indicates proximity to the test point desired, 53 may be used to advance the steppingrelays, a testposition at time. Whenin a test position,

LOCKHEED AIRCRAFT CORPORATION


MISSILES and SPACE DIVISION
checking of low and high iimitm may be made by witching in the voltmeter through Sl: adjutment of limite, if requited, cart then be accompltshed with Limit potentiometers accemible through the front panel. Switch 55 mablea manual resetting of all tepping relaye to the 0 test pomition.

After tepping to poition in the manual mode of operation, a check of the ampling loop can be accompilshed by closing witch S4 (MANUAL PRINT). This witch remove日 data handier power by grounding the data handler power relay and end a ignal to the digltal voltmeter to read.

### 4.4.11 Monitor Unit Temt Sequence

When the START TEST button on the master control unit de presecd, -28 V power momentaraly applied to all tepping relay for faltial rese to position 1 . The programmer ende an initlate signal ( -28 v) whichactivate ki in the monitor unit. The anitiate signalis also applied to the stepping relay command, the:rby sequencing and unlatching varloun relay bank.

Kl wiches the digital volimeter to the appropriate witch bank for reading the various telemetered voltages. Klalmo seta the repettion rate of the exfermal voltmeter readcircuit lo 3 geconds. Thit read circuit activateskg at 3-mecond intervals whichtnitates the sampling circuit in the digital volmeter.

Upon completion of the ampling cycle, the digital voltmeter enden pint command pulse whichis rcuted through the master control undt ( $K j 0$ ) and the data handler to the input of the print command delay circult in the printer. Afier a 0.2 - mecond delay the print cycle de dnitiated by this circult. During the print cycle -28 y poser in witchedfrom contact of K6, which are used to top the test in the event of a no-go, to the coll of $K 8$. Closure of $\mathrm{K} 日$ enable no-go sampling and Intially sete the stepplng atgnal drivercircuit. In the event of a red no-go, the tatic teatis deactivated by witching -28 v to the input of the red no-gotest otop contactsof K 6 at the end of the print cycle. K3 tmalianeously demengixed allowng a pulse delayed by 0.2 gecond from the etepping signal delay circult to energlze 1010 whichadvances the atcpping relays to the following teat position.


MISSILES and SPACE OIVISION
 After teat 225 , a deactivate ignal from the latimepping relay if went to the master control unit. S8 (HOLD witch) enable the equence to be interrupted at any dtep by opening the dnput to K8. All of the above Eequence etill occure except int no-go ampling and automatic advance of the tepping relay de etopped.

### 4.5 MANUAL TEST UNIT

The manual test unt establithes the meane for achieving manual control of payboad functione durtng diagnostic test procedures. Switches on the manual control unit imulate all payload commande, thumenabiling the operator to examine any component in the payload ior troublemooting, maintenance, callbration, and adjustment. The witches imulate the relays of the automatic mode of operation and are interlocked to prevent activation during the automasic mode of operation.

The ue of this manual control ystem enables troubleshooting of any component of the payload without removing it from the anwembly. If either the tatic or the dynamic test indicates a malfunction, detatled investigation of the fault can be made through the manual test undt in conjunction with either the internal or external test iguals. For example, malfunction of the payload data handler may be locallzed with the ald of an oscillowcope and the internal video generator. Similarly, malfunctions in the l-F amplifter can be localized through the use of an oscilloscope and the l-F test generator. The recelves acan mofors can be stopped through witches on the manuad test unit for testing of the recerver front ends. The normalgain settings of the preamplifiese can also be determinedin that mode of operation.

Figure $4-6$ shows the chematic diagram of the manual test unit. With the exception of the payload power witches, all witches are of the double-throw threeposition type. Two poles are used to mimulate relay contacts, while the thircipule of each witch is used for the interlock function. For toppirg the scan motors, the brake witch on the manual test undt interrupts one phame of the threc-phase, $400-c p s$ upply to the payload. This awitch almo interrupts


the 28-v upply, thus causing the brake to take effect. A 28-v bypamewitch enable restoration of the $28-v$ upply to the various unite of the payload equipment without actuating the scan motors.

Manual advance of the DTCUí provided by a momentary mitch located on the manual test unit. This enables the election of the modulation characteristics of the signal source in manual operation for ume in a diagrostic test.

RTC-4 (Preamp Select) has not been included one of the commands on the manual test unit. This function has been incorporatedin the band mode switch on the DTCU. When thi switch placed in any of the band positions, the agnal preamplifier of that band is automatically eelected for gain adjut. ment. A pushbuiton on the manual test unit it provided to allow the pream. plafier elected to be returned to the $\begin{aligned} & \text { gnal channel. Upon release of this }\end{aligned}$ button, the inhibit chanel of the band selected is under control for galnadJustment. The payload telemetered voltages for RTC-4 and RTC-5 can be measured by the digital voltmeter through the voltmeter elector awitch on the monitor I unit.

### 4.6 COMAMAN INDICATOR PANEL

This panel, shown in Figure 4-7, is composed of indicators that diaplay the status of payload commands during either manual or automatic checkout procedurcs. The purpose of this pancl is to provide a means for locating interaction of payload commands. Where possible, indicators show OFE as well as ON positions of command relays and witches. Indicators are also pro$v_{i}:=d$ to permit rapid determination of the preamplifier selected for control and its gain position. These dndicators are controlled by payload telemctered voltages.

### 4.7 SIGNAL GENERATORS

The signalgene=ators in the checkout equipment supply a pecific prepared program of simulated radar signals that completely test and calibrate the payload. These programmed signale comprise the dynamic testardare defined with the following criteria.



Figure 4-7 Command Indicator Panel


MISSILES OND SPACE OIVISION
a. Tet ignal are automatically felected for injection into the payload.
b. The test ignals are elected to accurately determine performance and holp locate fault in the payload.
c. The addtion of other bands can be readlly accommodated.
d. The accuracy of the teot mgnal characterintics is at loast an order of magnitude better than that specified for the payload.
e. The stability of the ignal generator obviatee frequent or repeated calibration.

The ignal generatore are capable of being programmed manually at well as automatically (as they are in the dynamic teft mode). In the manual mode of operation the diagnostic test for maintenance, seliability and detailed evaluation of the payload will be performed. The capability of manually controlling the payload with the manual tef unit in conjunction with the manual functions of the gonerator lends the flexibility required for these tef Tost not fuitable for cheduling in the automatic tet program are performed during tho manual method of operation.

Figure 4-8 how the functional block diagram of the ignal generating equipment. The group consist of two ignal ource units (band 1 and band 2), two modulator unit and the DTCU. All commands to the ignal generator group are is ued from the DTCU, via a modulator, to the ignal ource and ultimately to the payload equipment.

## 4. 8 DYNAMIC TEST CONTROL UNIT (DTCU)

The DTCU supplies:
a. Modulator units in tho checkout equipment with control signals in the dynamic test and manual modes of operation
b. The payload with the command signale (RTC-5 Gain Adjust, RTC-4 Preamp Select, RTC-8 Standby Circult Control)
c. Simulated time and attitude information for either the dymamic or manual mode of operation
d. Indication of the progress of the dynamic test

A schematic diagram of the DICU is ahown in Figure $4-9$.


Figure 4-8 Functional Block Diagram of $E-2$ Signal Generators


The DTCU aignals when manually controlled enable gelf-testing of the signal generators. Manual controls also provide for the initial election of the receiver peamplifier gain position in the dynamic test mode. The dynamic test control signals sent to the modulator: (a) set pretest conditions for the dynamic test mode of operation; (b) allow frequency and power equencing; and (c) program the dymamic tet ignals.

The preteft conditions determine proper frequency and power equencing time. The DTCU band mode elect ignale (derived from the number of $0=$ ceiver band pule present in one complete payload ean) elect the correct time intervals in the modulator frequency and power aequencing circuits, The time intervals pregrammed for each changing of frequency of them BW' will vary, depending upon the number of bands being tested. The band mode select circuit determines the correct timing information and aende it to the modulator units via the band mode select ignals.

In the dynamic mode of operation, the test signals from the DTCU initiate and maintain the progress of the test. The test signals consists of modulator tepping witch advance ignals, one to each modulator, which allow the dynamic test to progress from one scan position to another. There are 20 scan positions of the modulator tepping switches.

Two Nixie indicators on the front panel of the DTCU show the numerical scan position of the modulator units. Twenty-one stepping switch positions are required to complete the 20 ans.

The dynamic test programs for $F-2$ (flets 1, 2) are shown in Tables 4-2, 4-3, and 4-4.

The simulated command signals supplied to the payload are functions of the dynamic test scan ponitions. The simulated payload command signal consist of RTC-4, RTC-5, and RTC-8 and can be applied to the payload in either an automatic equence, $a s$ in the dymamic test mode, or in a manual sequence, as is the case in the manual mode of operation.

The attitude information is injected into the payload at variour points of the scan positions in the dynamic test program.

4-36

LOCKHEED AIRERAFT CORPORATION


$\begin{aligned} & \bar{o} \\ & \underset{\sim}{\pi} \\ & \underset{\sim}{x} \end{aligned}$	DYNAMIC TEST PROGRAM FOR BAND 1 OF F-2 (FLTS 1, 2) Test Frequencies: 2.8 kmc or $2.6,2.85$ and 3.1 kmc							
$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Scan Number	PRF (cps)	$\begin{gathered} \text { PW } \\ (\mu s e c) \end{gathered}$	Signal   Charmel   Amplitude (dbm)	Inhibit Channel Amplitude ( dLm )	Payload Data Flandler	Gain-Settings   Signal Channel   Preamplifiers   Set to.-. Position	Gain- Settings   Inhibit Channel Preamplifiera Set to-.-Position
$\overrightarrow{0}$	0	-	-	-	-	Normal	Normal	Normal
	1	258	21.0	-77	-85.5	Normal		
	2	258	21.0	-52	-60.5	Normal		
	3	400	10.5	-27	$-35.5$	Normal		
$\cdots$	4	400	10.5	-77	-77.5	Normal		Ofí
8 -	5	400	10.5	-52	-52.5	Normal		Normal
	6	400	10.5	-27	$-27.5$	Normal		Off
1	7	400	10.5	-52	$-60.5$	Normal	Minimum	Maximum
	8	400	1.0	-77	-85.5	Normal	Normal	Normal
	9	400	1.0	-77	-85.5	Normal	Normal	
	10	400	30.0	-52	-60.5	Normal	Minimum	Minimum
	11	24 kc	1.0	-27	No signal	Normal	Minimum	Minimum
$\frac{3}{6}$	12	34 kc	1.0	-27	No signal	Normal	Minimum	Minimum
\%	13	120	21.0	-52	-60.5	Normal	Minimum	Minimum
号	14	129	21.0	-52	-60.5	Normal	Minimum	Minimum
咨	15	258	21.0	-52	$-60.5$	Redundant	Minimum	Minimum
	16	400	10.5	- 52	-60.5	Redundant	Minimum	Minimum

Table 4-2 (contd)

Scan Number	$\begin{aligned} & \text { PRF } \\ & (c p s) \end{aligned}$	$\begin{gathered} \text { PV } \\ (\mu \mathrm{sec}) \end{gathered}$	Signal Channel Amplitude (dbm)	Inhibit   Channel Amplitude ( dbm )	Payload   Data   Handler	Gain-Settings Signal Channel Preamplifiers Set to---Position	Cain-Settings lnhibit Channel Preamplifiers Set to---Position
17	120	28.0	- 52	-60.5	Redundant	Minimum	Minimum
18	129	28.0	-52	-60.5	Redundant	Minimum	Minimum
19	24 kc	1.0	-27	No signal	Redundant	Minimum	Normal
20	34 kc	1.0	-27	No signal	Redundant	Normal	




Table 4-3 (contd)


Table 4-4
DESCRIPTION OF SGANS FOR DYNAMIC TEST PROGRAM

Scan 3

This is an overall receiver check. Three frequencies (low, mediuna, and high) per band are selected to check the tracking of the shaft eacoder and preselcctor with the oscillator. An amplitude of -77 dbm for the signal channel, and -85 dbm for the inhibit channel, tests the lowest acceptance level of the receivers.* Nistrackinc of the preselector may result in fallure to obtain an intercept dite to increased insertion loss in the signal channel. Afailure of an intercept can therefore be due to bad sensitivity (noise figure), receiver mistracking, a wrong threshold setting in the amplitude comparator, a dita handler fallure, or a probability of occurrence. ${ }^{*}$

The PRF counter should read 155 counts ( 010011011 ) (258 cps) and the PW counter should read 42 counts (101010) (21 $\mu \mathrm{sec}$ ).

This scan, except for sensitivity, serves the same functions as scan 1 except at a -52 dbm and -60 dbm power level for the two channels. A lack of intercept at any frequency will be caused by mistracking of the receivers, the data handler, or improper log amplifier action as a function of signal level.

The third scantests for a $50-\mathrm{db}$ dynamic range of input power for operation of the receivers. Inhibit action will occur if the signal channel $I-F$ amplifier limits the high input level.

The PRF counter should read 100 counts ( 001100100 ) ( 400 cps ) and the PW counter should read 21 counts ( 010101 ) ( $10.5 \mu \mathrm{sec}$ ), which are complementary to the digital number of scans 1 and 2 . The PRF and PW counters are thus checked.

[^4]
## Table 4-4 (contd)

Scan 10 This scan checks the S/I rotio at - 50 dbm . With the signal channel gain at minimum, frequency 1 will be an intercept and frequency 2 this son, repeatud as many times as necessary, is usen to de termine the probability of acceptance. This is done by slopping the dynamic test in this scan. level with an $8-d b S / I$ ratio. Both signal and innibit channel gains are set to normal, and the last 2 intercepts recorded. There is a probability that the signal will be inhibited during this scan so that it is repeated for $\operatorname{scan} 9$.

## Table $4-4$ (contd)

might be inhbited. Aiter setting the inibit channel gain to mini mum, frequency 3 will be recorded as an intercept. The acceptance or rejection of frequency 2 gives an indication of actual $S / I$ ratio needed at -50 dbm power level and frequency 2 .

Scan 11 The PRF of $24 k c$ is close to the maximum PRF that the data handler will allov due to a blanking gate in the amplitude comparator. Scar ii tests that the gate is not toolong. By removing the input to the inhibit channel in band l, the high amplitude signal testa the skirt selectivity. The first intercept will be made as soon as the S/I input ratio is greater than 8 db . * This will occur at the botton of the band pass characteristic curve. The inhibit channel preamplifiers are turned off.


[^5]\footnotetext{
LOCKHEED AIRCRAFT CORPORATION


Table $4-4$ (contd)

## Exphanation of Scan ll

Scan 11 aiso tests the readout circuit which allows one intercept every 24 milliseconds. The i-psec output generally tests the receiver's ability to handle this pulse.

Scan 14

Scan 15
$\operatorname{Scan} 16$

Scan 17

Scan 19
$\operatorname{scan} 20$

Scan 12 in conjunction with scan 11 checks skirt selectivity. The 34-kc PKF testa that the amplitude comparator blanking pulse is not two small. The $34-k c$ PRF should be counted every $35 \mu \mathrm{sec}$. Since the pulse interval is less than the blanking pulse, every other pulse will be recorded. The PRF counter should read 17 kc due to the dividing action of the blanking pulse.

The purpose of scan 13 is to check the non-verification reset time in the computer. If a second pulse is not received within 8 milliseconds of the first pulse, the inte-cept is considered non-verified and the computer is reset for fur ther intercepta.

The $129-c p s$ PRF tests that the non-verified reset circuit is not too short. Its pulse interval is 7.75 milliseconds.

This is the first test of the redundant data handler. Scan 15 is the same as scan 2. The remaining scans test the redundant data hander as in scans loly.

This is the same as scan 3 except the signal channel amplitude is -52 dbm and the inhibit channel amplitude is -60 d mo. The redundant data handler counters are checked.

Same as scan 13 with redundant data handler. Same as scan 14 with redundant data handler. Same as scan 11 with redundant data handler. Same as scan 12 with redundant data handler.



#### Abstract

          



The manabl calbration of the signal generators is acomplished, by means of tie mantal tost wat, when the payiond equipment is in the manual mode of operation. The MiNUAL ADVANCE switch on the manual test unit steps the DTCU to any desired scan position and sets the modulation characteristics of the sinnal source by propramming the modulators to the desired type of output signai. The mamal CW-PULSE SELECT switch on the modulator unit ensbies power and frequency calibrations in either the CW or the pulse output tye of operation. The BAND SELECT switch on the DTCU applies anode and grid rol'ancs to the approprigte BWO and grid and anode remote control volages to the curresponding modulator units.

### 4.10 BAND MODE SELECTION

After the payload receivers are turned on, through the master control unit, the monitor l mit supplies the DTCU with various band gates that are fed back from the paylond as a control signal for the checkout equipment. This signal permits the DTCU to automatically select the correct combination of checkout equipment circuite for two-, three-, four -, or five-band operation. Logic adders, inverters, and AND gates allow the appropriate relays

to be enorgized, depending upon the number of bards in use. The energizing of the relay selects the conrect tino-sequmeng signal for the modulator unit, and thus controis the time interval during which a particular fuequency is injected ato the payload. One complete payioad test scan ss necesaary to enezsize the proper relay.

## 4. 11 PREAMPLIEIDR GAIN ADJUSTMENT

A feedback system is used for antomntically adjusting the gain of the payload preamplifiess. A two-level telemetering code fprovided in the payluad for monitoring preamplifer gain setings) is used for the feedback signai. Each level of the telemetering code consists of a ratage that is part of a four voltage divider network. There is a set of levels for monitoring the correctness of the PREAMPLIFIER SELECI position while other levels monitor the preamplifier gan settings. The DTCU utilizes the telemetering outputs to autometically select a preamplifier and change its gain setting. The change of the gain setting is accomplished during the time when that particular band Gate is ON. This band gate encrgizes a six-pole relay that comects any one of four reference voitages from the DTCU and the corresponding telemetered voltage, to the voltage comparators.

The presence of an error signal in the output of the comparator is used to trigger two monostable multivibrators. One of the multivibratora drives a relny at a rate of 10 cps for 50 milliseconds. The contact closures of RTC-4 step the preamplifier select stepping switches in the payload until the comparator output error signal disappears, deactivating RTC-4. Upon the deactivating of RTC-t, the gain select inhibit signal (derived from the preamplifier select voltage comparator error signal) disappears and the gain selectcircuit is allowed to send RTC-5 to the parload and to select the proper gain setting in the snme manner as the preamplifier select circuits. The reference voltares will vary depending on the particular gain desired. Three different gain positions are programmed during the dynamic test.

The three stepping switches in the DTCU impress the reference voltages upon the relay contacts.

LOCKHEED AIRCRAFT CORFCRAIION


In both the automatic test mode and the manual calibration mode, the preamplifiers are set to their normal gain positions when the stepping switches are in the zezo scan position.

「wenty 4 -position witch.. select the appropriate reference voltages for normal gain settings. (we switches arelocated on the rear panel of the DTCU.)

The preamplifier gains are changed to their maximum, minimum, and normal setting during the dynamic test. The stepping switch energizes an enabling relay in either the sigral or inhibit channel each time the gain settings in that channel are altered. This relay permits gain control action whenenergized and inhibit action when de-energized.

## 4. 12 DY゙NAMIC TEST SEQUENCE

Before the artual starting of the dynamic test, the payload receivers are turned on by a signal from the master control unit. A zeroscan signal from the same unit seis the DTCU in the zero scan position. At the end of the 70second warmup delay or pretest duration, during which time the receivers are set to their normal gain positions, the zero scan signal is removed, and the start dynamic test signal is sent by the master control unit to the DTCU. This signal latches relay $K 4$, Figure $4-9$, which in turn, permits the advance signal to pass through Kl6 and K4 to the stepping switch advance pelay, K2. After 50 milliseconds $K 1$ is energized, de-energizing $K 2$ and a!lowing the program stepping $s$ witches to advance. The advance signal is a band gate, selected on the basis of the receiver bands in use at a particular time, and generated by the first receiver band of the group in use. The gate-actuated relay $\dot{r} 2$ makes it possible for the advance signal to activate the stepping switches in the DTCU. The stepping switches will proceed through the 20 scans of the dynamic test program.


MISSILES and SPACE DIVISION

## 4. 13 MODULATORS FOR BANDS 1 AND 2

The modulator unit (Figure 4-10) supplies modulation pulses of preprogrammed widths and repetition rates to the $B W O$. It also supplies programmer d-c voltages for varying the frequency and power output of the BWO. Programmed control voltages for the signal source attenuator setting are also contaned in the modulator unit.

Different RF's (listed in Tables 4-2 and 4-3) are used for the various required modulation characteristics. Theee are: (a) 34 and 24 kc from Wien bridge oscillators, (b) 400 cps from the 400 -cps power supply in the checkout equipment, (c) 258 cps and 129 cps through dividers from 516 -cps tuning fork oscillator, and (d) 120 cps , a multiple of the $60-\mathrm{cps}$ power line. A monostable multivibrator synchronized to the above signals will drive either of two pulse generators to produce any one of four PW's, namely, $1,10.5$. 21 , or $28 \mu s e c$ or the actual modulation signal.

Frovisions are made in the DTCU for automatically selecting the correct timing of the frequency and power sequencing circuits. The band mode select signals, which are based on the specific group of frequency bands (two, three, etc.), energize one of four relays in the modulator unit. The contacts select the proper time constant of two time delay circuits. The time delay circuits sequentially energize a series of relays which thange frequency and power output of the $B W O$ during the $O N$ time of the band gate sent from the DTCU. The anode and grid voltages of the BWO are programmed in three steps during the scan time of the particular band. The modulator units also program power output of the signal source units, with stepping switches in the modulator units. The modulators also include provisions for frequency and output power measurements.

The accuracies of the front-of-panel accessible frequency and power measuring facilities are $\pm 0.1$ percent and $\pm 0.5 \mathrm{db}$ respectively.

The measuremants are used in the manual mode of operation for calibrating the aignal sources. The front panel switch allows calibration at one five different frequencies which can be injected into the payloar. The modulators


MISSILES and SPACE DIVISION


447423-1-082
Figure 4-10 Block Diagram of Modulator Unit
LOCKHEED AIRCRAFT CORPORATION SECRET MISSILES AND SPACE DIVISION

I
have the capability of injecting the end frequencies of the band or any of the three stepped frequencies into the payload in the manual mode of operation. In the dynamic mode, the modulator: by means of $s$ witches located on the rear panel, can inject into the payload only one frequency or the three step frequencies per scan. They can also eliminate modulation pulses after $\operatorname{scan} 14$ of the dynamic test.

To calibrate the signal source parameters the checkout equipment is put in the manual mode of operation. The BAND SELECT switch in the DTCU is then set to the desired band, thereby activating that particular signal source unit. The FREQUENCY SELECT switch on the modulator front panel then selects one set of anode and grid voltages for the $B W$ for the particular frequency and power output desired. The frequency of the signal source is measured, using a calibrated wavemeter on the signal source unit tuned for a "dip" on a front panel power meter of the modulator unit. The power output of the BWO is also read on the same meter. The FREQUENCY ADJUST potentiometer provides a $\pm 10$ percent variation in frequency. Similarly, a $\pm 10$ percent variation of $B W O$ output power is possible through adjustment of the POWER potentiometer. After calibration of the three frequencies and power levels within the particular band, the modulator unit is ready for test operation. The STATIC-DYNAMIC switch (S4) on the master control unit is then turned to the DYNAMIC position and the START TEST button (S3) is pressed, causing the stepping switch to move to its zero scan position. The modulator advance signal from the DTCU advances the modulator pulse and sets the correct attenuation for desired power-level outputs of both signal and intibit channels. For programming the three frequencies within each band, the band-switching gate is applied to two time-delay circuits, which energize relays sequentially after specified time delays, depending upon the number of bands under test. The first test frequency signal is injected into the payioad. At the end of the first time delay, the first relay is energized, and the frequency and power control voltages are programmed to inject the second test frequency signal. The second relay, energized by its time delay circuit, causes the third test frequency signal to be programmed and injected into the payload. This frequency sequencing takes place during every one of
the 20 scan positions of the modulator 2 stepping switch. Tables $4-2,4-3$, and 4-4 give the detailed modulation and other characteristics for each of the 20 scans. Table $4-5$ is a chart of intercepts provided for in each frequency in the 20 scans. At the end of the dynamic test, all the power is removed from the modulator unit, and the stepping switch is sequenced back to its zero position.

### 4.14 BAND 1 SIGNAL SOURCE UNIT

Figure 4-11 is a schematic diagram of the band 1 signal source unit, including the $R-F$ oscillator, attenuators, $R-F$ power distribution circuits, control circuits, and modulation circuits. A Raytheon type QK691 BWO (tunable from 2150 to 3150 Mc ) is used as a grid-modulated signal source. Since the BWO is voltage tunable, the programmable anode supply voltage determines the frequency. A similarly programmable grid supply voltage controls the output power at each frequency. The direct-reading frequency meter, with an absolute accuracy of $\pm 0.1$ percent and a built-in thermistor for use in conjunction with an AIL power bridge, is included for frequency and output level adjustments. The coaxial switch-attenuator-pad combination, which is automatically programmed, obtains the required output signal amplitudes. A hybrid, used as a power splitter, provides dual channel output for signal and inhibit antenna feeding. Another programmable attenuator varies the output amplitude of the signal channel relative to the inhibit channel. A pad in the output of each channel assures a $50-o h m s o u r c e ~ i m p e d a n c e . ~ A ~ p u l s e ~ a m p l i-~$ fier is included for modulation of the BWO. A transistorized time delay and a BWO protection circuit are also incorporated.

The signal source unit for band 1 is capable of providing the following overall accuracies over its measuring band:
a. Frequency: $\pm 0.2$ percent
b. PRF: $\pm 0.5$ percent
c. PW: $\pm 1.0$ percent
d. R-F signal amplitude varintion: 60 db
e. Output level for either one oi the dual channels: variable from -20 db to $-80 \mathrm{db} \pm 2 \mathrm{db}$


Table 4-5
CHART OF INTERCEPTS

Number of Intercepts

Scan	Frequency	Frequency 2	Frequency 3
1	1	1	1
2	1	1	1
3	1	1	1
4	0	0	1
5	1	1	0
6	0	0	2
7	2	2	0
8	0	10:0	1
9	1	1	1
10	1	0 or 1	1
11	3	3	3
12	3	3	3
13	0	0	0
14	1	1	1
15	1	1	1
16	1	1	1
17	0	0	0
18	1	1	1
19	3	3	3
20	3	3	3

[^6]
447423－1－083
Figure 4－11 Schematic Diagram of Band 1 Signal Source

### 4.15 BAND 2 SIGNAL SOURCE UNIT

The band 2 signal source unit is shown in Figure 4-12. A Varian VA-161 BWO is used as a grid-modulated signal source. A programmable anode supply varies frequency. Power output variations due to frequency sensitivity of the BWO, as well as due to differences between BWO tubes, are compensated for through a programmable grid supply. To prevent frequency pulling of the BWO, a ferrite isolator with a minimum isolation of 25 db over its band and a maximum insertion loss of 1 db is used at the ovtput of the BWO. Two $25-\mathrm{db}$ programmed step attenuators obtain the required signal output amplitudes. Dual channel output is provided by using a waveguide hybrid as a power splitter. Another ferrite attenuator varies the output of the inhibit channel relative to the signal channel. Output pads are used to assure a matched source impedance. A transistorized BWO protection circuit and a pulse amplifier for modulation are incorporated.

The signal source unit for band 2 is capable of providing the following over all accuracy over the measuring band:
a. Frequency: $\pm 0.2$ percent
b. PRF: $\pm 0.5$ percent
c. PW: $\pm 1.0$ percent
d. R-F signal amplitude variation: 50 db
e. Output level for einher one of the dual channels: variable from -20 db to $-80 \mathrm{db} \pm 2 \mathrm{db}$

A direct-reading frequency meter and a built-in therimistor used in conjunc tion with an external power bridge provide frequency and power measurements during adjustments.

## 4. 16 SIGNAL SOURCE AND MODULATOR FOR BANDS 3b AND 3c

A proposed block diagram of the $R-F$ portion of the signal sour ce for bands $3 b$ and $3 c$ is shown in Figure $4-13$. Three spot frequencies are provided in each band. Frequency selection, output level adjustment as well as signal-to-inhibit relative power level adjustments are mede through coaxial switches and suitable fixed and variable attenuators.

$$
4-55
$$

LDCKHEED AIRCRAFT CORPORATIDN



Consideration is being given to possible modification of the band 2 modulator for use in bands $3 b$ and $3 c$, if it is feasible. Should this appear inadvisable, new modulators for bands $3 b$ and $3 c$ will be designed.

The initial F-2 checkout equipment is bcing designed for $F-2$ (flts 1, 2) payloads. Retrofit units will adapt it for the later F-2 (fits 3, 4) payloads.

### 4.17 ANTENNA ADAPTERS

### 4.17.1 General Description

The antenna adapters are devices used to inject $R-F$ test signals into the payload antennas. The entenna adapters are fed from the signal source outputs by standard transmission line components and have output terminals suitable for direct coupling to the antenna under test.

To efficiently couple energy into a circularly polarized antenna, a circularly polarized adapter is required. Ir. addition, such an adapter must be optimized over the frequency band with respect to ellipticity and transmission line discontinuities. The composite effect of these appears as an additional insertion loss of the adapter-antenna combination. Assuming a perfect adapter, the overall insertion loss versus frequency characteristic is then dependent upon the characteristics of the antenna.

### 4.17.2 Band 1 Antenna Adapter

The band 1 antenna adapter (Figure 4-14) is a coaxial device used to inject calibration signals from the checkout equipment signal source into the payload antenna. It consistr of three coaxial hybrids and provides four outputs of equal amplitudes and with relative phases of $0^{\circ}, 90^{\circ}, 180^{\circ}$, and $270^{\circ}$. This combination will produce a circularly polarized wave when fed into the four terminals represented by the coaxial sleeves of the turnstile antenna. Connection is made by a special adapter which plugs into the sleeve dipole as an extension of the coaxial line with the sleeve. Interconnecting lines are coaxial cables.


$4474271-046$

Figure 4-14 Block Diagram of Band 1 Antenna Adapter

Typical performance crves for several models of turnstile antennas exhibit periodic variation of overall insertion loss between 2 to 5 db . These variations are the cyclical effects of rotating polarization ellipses and discontinuities. It is felt that adapters should be mated to each antenna due to variations between antennas. SWR measured at the adapter input, when coupled to the antenna, will be lesa than $2: 1$.

### 4.17.3 Band 2 Antenna Adapter

The band 2 adapter (Figure 4-15 and 4-16) is a waveguide tructure which couples calibration ignals from the signal mource into the payload antenna by direct contact with the antema. The circular polarization if generated by a waveguide dieiectric phase hifter and an inclined waveguide to generate the orthogonal component of the field.

Repreentative curves for thim unit exhibit ine ertion los variation of from 0.5 to 2.5 db . Each adapter and antenna combination will be matched. Inter = nal reflective losse and polarization ellipee orientation account for the 2.5 do peak insertion los for thi devict in combination with a typical antenna. SWR data at the input to the adapter, when coupled to the antenna, will be under 2:1.

## 4. 18 F-2 TEST BOX AND DUMMY LOAD UNIT

### 4.18.1 General Demeription

Tho purpose of this unit is to verify the proper functioning capabilities of the $E-2$ checkout equipmont. It accomplishe this in conjunction with various tandard commercial equipment by injecting calibrated inpute, indicating the prefence of required outpute and generally mimulating payload signals under checkout condition. The imulated Subytem C power upplies provided by the checkout equipment are checked for compliance with the payload Fower supply pecifications under peak loads normally imposed by the payload. The test box and dummy load unit it hown in Figure 4-17. A drawing of the panel in thown in Figure 4-18.



Figure 4-15 Block Diagram of Band 2 Antenna Adapter

$$
4-61
$$



Figure 4-16 Block Diagram of Band 2 Antenna and Adapter Assembly



Figure 4-17 Test Box and Dummy Load


Figure 4-18 Panel of Test Box

Interconnection between the checkout equipment and the test box and dummy load unit (TBDLU) is made through the same cables and connectors used to mate the checkout equipment with the payload. The TBDLU incorporates the means for checking, testing, and verifying every input and output of the checkout equipment by simulation of payload circuit characteristics and/or functions. The condition of each command in the simulated Subsystem $H$ portion of the checkout equipment is indicated by lights on the TBDLU front panel. Similar indicators are used for checking the presence and polarity of the attitude signal.

The monitor portion of the checkout equipment is tested with 48 different voltages derived from a precision divider located in the TBDLU. This includes both critical and noncritical no-go voltages introduced into the checkout equipment in the manner of voltages from payload monitor points.

Band gate voltages are provided by a repeat cycle timer located in the TBDLU controlled by logic in the checkout system. The presence of each band gate voltage is indicated by lights on the TBDLU front panel.

The gain and preamplifier selection circuits in the checkout equipment are checked by electronically closing the loop with circuits in the TBDLU. The four simulated telemeter code voltages are set up by means of potentiometers with emittur-follower outputs. The preamplifier select and gain select fundlions in the checkout equipment are verified by simulation, in the TBDLU, of the corresponding payload telemeter code voltages. The TBDLU converts the error signal output from the gain and preamplifier comparators in the checkout equipment to step a binary counter in the TBDLU until the combination of code voltages selected is the same as the reference inputs to the comparators. Front panel indication of the chosen preamplifier and gain setting is provided on the TBDLU.

The tape simulator portion of the TBDLU contains a test word generator with the following capability:
a. PRF:

LOCKHEED AIRCRAFT CORPORATION

1. 20 kc
2. 12 kc
3. 4 kc

4-65

b. Word content selector:
d. Amplitude adjust potentiometer:
e. Rise-time switch:

1. All 1's
2. All 0's
3. Alternate 0 's and l's
4. Alter nate 1 's and 0 's
5. Two 0's, eight l's repetitive
6. Tw:o 1's, eight 0's repetitive
7. 50 bits
8. 60 bits
9. Continuous (free running)
10. External (capstan) controlled

Continously variable from 20 v to 0 v .

1. $2 \mu \mathrm{sec}$
2. $4 \mu \mathrm{sec}$

A block diagram of the tape simulator is shown in Figure 4-19 and the simulator waveforms are shown in Figure 4-20.

### 4.18.2 Test Word Generator

The test word generator uses a gated multivibrator to provide a burst of 50 astable pulses. One output is fed into the l's generator, producing a burst of negative going pulses. These pulses are gated by the blanking signal of the scale-of-ten counter to give a proper pattern of l's. The other output of the multivibrator is fed into the 0 's generator and produces a burst of positive going pulses. These are gated by the blanking signal of the scale-of-ten counter to give a desired pattern of 0 's. The blanking is arranged so that when a 1 is produced, a 0 is inhibited, and vice versa. The l's and 0 's signals are combined in the inverting combining gate to produce a burst of cor rect polarity l's and 0 's. An emitter follower generates a low impedance signal. When the'scale-of-ten counter resets five times, the scale-of-five counter gives a signal which shuts off the oscillator at 50 counts. A reset pulse is used to restart the oscillator and repeat the sequence. By proper


MISSILES and SPACE DIVISION


Figure 4-19 Block Diagram of Tape Simulator



Figure 4-20 Waveforms of Tape Simulator

LOCKHEED AIRCRAFT CORPORATION


MISSILES and SPACE DIVISION
selection of the different outputs of the scale-of-ten counter, six different patterns of 1 's and 0 's can be produced. A $s$ witch on the front panel of the TBDLU provides for this selection.

Provision for frequency variation is made by r-c adjustment in the oscillator and the 1 's and 0 's generator. Similarly, flexibility is provided for signal amplitude variation, free-running multivibrator operation and word length increase to 60 bits through a change of the scale-of-five counter to a scale-of-six counter.

## 4. 19 CHECKOUT DATA HANDLER

The general requirements for the data handler unit are as follows:
a. The unit shall process digital information in an open loop fashion, printing correct as well as incorrect information.
b. The 3-level return-to-zero binary code of the payload shall be converted to decimal form and recorded on a digital printer.
c. The digital word shall be broken up into subwords; the information obtained from these shall be:

1. Parity check
2. Numbered bits in word
3. Time of intercept (seconds)
4. Pulse repetition period 2 (PRF-2) (milliseconds)
5. Pulsewidth (microseconds)
6. Pulse repetition period l (PRF-l) (milliseconds)
7. Band number
8. Channel number
d. For PRF-l and PRF-2, each count shall be converted to 0.025 millisecond for two-band operation and to 0.05 millisecond for three-band operation.
e. For PW, each count shall be converted to $0.5 \mu s e c$.
f. The channel number shall be converted from a l's complement-gray code to binary code, and then to the final decimal code.
$g$. Asymbol shall be assigned and printed to indicate the subword processed.
h. A self-test capability shall be included. This shall make use of a test word generator, providing test words of alternate 1 's and 0 's, all 1 's, or all 0 's.
i. A signal from the master control unit shall automatically stop the self-test function and permit the payload tape words to be entered.
j. A second signal from the master control unit shall start the word processing. Automatic termination of the processing shall occur on a signal from a timer, which is reset at the beginning of the tape processing.
k. The payload tape shall automatically be started and stopped for the processing of each word for thirty minutes, after which time the tape shall go to the end.
9. Capability for changing the number of subwords being processed without equipment modification shall be included in the design.
m . Capability of changing the scale factors for the processed data shall be included in the design of the equipment.
n. Capability for expansion to a 60 -bit word without modification to the equipment shall be included in the design.

The data handler unit contains about 250 plug-in cards, which are standard AIL digital building blocks. Most of these cards consist of four standard circuits; a few of the cards consist of nonstandard circuits for input and output connections. The standard cards are arranged in what might again be called standard circuits, such as binary counters, decimal counters, inhibit gates, pulse generators, and a shift register. The arrangement of these circuits into an overall logic diagram results in a system that meets the design requirements of the data handling functions. Figure 4-2l is a block diagram of this system, showing the arrangements of the various circuits.

The AIL digital-handling blocks have four functional classifications: the flipflop unit. the logic unit, the driver unit, and the pulser unit. The flip-flop unit is used for static storage, counting, shift register, etc. It has four independent pulse (clock) inputs and four d-c (logic) inputs. It acts in a logical sense as a bistable device; it has two possible states. It always remains in a given state until "flipped" into the opposite state by a suitable signal. This placing of a flip-flop in a given state is called "setting the circuit." One state is called the 0 state, the other is the 1 state.



The logic unit im a stansimtor momplifier. The input ignal is inverted at the collector output. Depending on the input d-c aignal level, the logic circuit is used as either an AND gate or an OR gate.

The drivet unit it a two-mage power amplifiar designed to furnish a large current.

The pulfer unst producem an output pulat for a positive-going input aignal. The duration of the output pulse if determined by an r-c time-constant notwork.

### 4.19.1 Deacription of Circuits

The data handier hown in Figure $4-21$ is divided into sixteen s ub-blocks, each containing groups of digital building blocks. Theme ub-blocks are deecribed in ucreation. It ie convendent to refer to these blocks by number; each number correspond to that which appeare on the block diagram and to the equence in which they are described here. For example, 6 refers to the timang circuit ab-block and imo sixth circuit to be deacribed.

1. Control Circuit--This circuit has the following functions:
a. It resete the following circuits at the beginning of each word.
2. Parity check
3. Subword ring counter
4. Timing
5. Tent word generator
6. Readout igral generator
7. Complemente counter ofillator

This retet circult contivt of a onemot multivibrator driving a low-impedance tranelotor power amplifier. it is actuated by ignal 1 from the master control unit, or by the RESET switch, or by a feedback ignal from the ubword ring counter.
b. It reete the followind circuita the beginning of each word and ubword.

1. Output ring counter
2. Ratio counter
3. Subword hift and binary complementa counter


MISSILES AN SPACE DIVISION

This reset circuit is a low-impedance transistor power amplefier. It is driven by pulse from the INITIAL RESET circuit and the ubword shift and the complements binary counter.
c. It contains the TEST WORD SELECTOR control that ia a direct manual selector of the desired test word from the test word generator.
d. It contains the PRINT CYCLE SELECTOR control that determines whether the printer functions singly or repetitively during the test phase with the test word generator. It also controls the subword ring counter for a single subword printing.
e. It contains the PAYLOAD TAPE CONTROL circuit that is reset at the end of each word.
The PAYLOAD TAPE CONTROL circuit consists of a single switching transiotur stage activated by a signal from the INITIAL RESET. After the last subword has been processed, a signal from the subword ring counter via this switching stage turns the tape $O N$, and the processing cycle begins. On a signal from the master control unit, relays contained in the control circuit rem move the test-word generator output from the input to the data handler and $s$ witch in the tape output. Another relay actuated from the master control unit by a signal corresponding to the FRONT OF TAPE signal) starts the processing of the word in the shift register. The RESET witch generates an INITIAL RESET pulse to initiate the self-test.
f. It contains the relays for disconnecting manual operation circuits and placing the equipment in automatic operation.
g. It contains the RESET control.
h. It contains a timer that is reset at the beginning of the tape readout, and that determines how long the stop-start readout of the tape shall continue.
i. It contains the relays for witching the printer control from the data handler to the monitor unit.
2. Input and Parity Check Ciscuits--The input circuit converts the 3-evelreturn-to-zerobinaryinput signal to a 2 -level binary signal with two separate outputs containing $0^{\prime} s$ and ${ }^{\prime}$ 's on separate lines, and a third output of combined '' $^{\prime}$ and $0^{\prime} s$ to form the read-in shift pulses.
The parity check circuit is a flip-flop that is set to a particular state before the word enters the input circuit. As the word enters, it is flipped by the $l^{\prime} \mathrm{s}$ in the word. Parity is correct if the flip-flop ends up in its initial state.


The input circuit is composed of a special digital board，standard logic boards，a driver amplifier，and a flip－flop acting as a buffer between the input circuit and the shift register．
3．Read－In Shift Drivers．－The read－in shift drivers provide a high－ current pulse derived from the incoming word information．This pulse shifts the incoming word information along in the shift register．
4．Output Ring Counter－－The output ring counter performs the following functions．
a．It counts the number of bits in a word entering the shift register．
b．It performs the binary－to－decimal conversion in conjunction with the subword shift and complements binary counter．
c．It drives the digital recorder．
d．It provides the signal to turn on the timing circuit．
The output ring counter consists of four ring－of－ten counters capable of counting up to 10,000 ．The bits of a word are counted directly from the input information，and the result is applied directly to the printer．The binary－to－decimal conversion is accomplished by counting（either directly or through a scale factor）the number of pulses required to set to zero the complements binary counter．Ten milliseconds after this counter reaches zero，a command is issued to print，and the output of the readout ring counter is printed by a digital recorder．
5．Shift Register－The purpose of the shift register is temporary stor－ age of iniormation．The means for sto：age of the binary informa－ tion is the state of the flip－flop circuit．Digital data in serial form are fed to this unit．A control signal（shift pulse）advances the input information through the circuit．The shift register used in this sys－ tem is wired for 60 plug－in flip－flop circuits．The circuit is ar－ ranged so that the shift pulse advances the incoming information from one flip－flop to the next in one direction，and shifts the word bits out of the register for decoding in the opposite direction．These decoding shift pulses are supplied from an internal clock pulse through the readout drivers．
Thirteen of the flip－flops of the shift register form the readout sec－ tion．These are also used to initially store the time subword that is processed first in the subwordshift and complements binary counter and in the remainder of the data handler．All successive subwords are shifted into the readout section and handled in the same manner as the time subword．
6. Timing Circuit--The function of the timing circuit is to control the sequencing of the subwords processed in the subword ring counter. The timer consists of a Schmitt trigger driving a $15-\mu s e c$ pulser. which in turn feeds the subword ring counter through a driver amplifier. For each count, a subword is processed. The timer period of 0.8 second is long enough to permit any one of the subwords $t$ ? be processed and printed. The timer is reset at the end of each word and there is a $5-s e c o n d$ delay between the time it is reset and the first autput pulse.
7. Subword Ring Counter--The subword ring counter programs the processing of each subword. This programming consists of presetting the subword shift counter so that the 16-count output will occur when the proper number of bits has been shifted into the readout section of the shift register. In addition, the subword ring counter programs the ratio ring counter to give the appropriate scale factor changes in the binary-to-decimal converaion process.
The subword ring counter consists of a ring counter in which all the flip-flops are initially 0 -set. Thefirst timing pulse sets the flipflop 1 to a 1 state. The second timing pulse $0-8 e t s$ flip-flop : and d-sets flip-flop 2. A similar process occurs with timing pulses for the other flip-flops in the subwordring counter. A $15-\mu \mathrm{sec}$ delay has been introduced between the 0 -setiing of flip-flop 2 and the 1 setting of flip-flop 3 and all following flip-flops in the ring counter. The purpose of the delay is to ensure that the outputs of the subword ring counter will have a definite change of state after each timing pulse.
8. Digital Recorder--Upon command, the Hewlett-Packard digital recorder prints the decimal number stored in the output ring counter. The print command consists of a relay contact closure that occurs 10 milliseconds after the binary-to-decimal conversion has been completed.
9. Subword Shift and Complements Bincry Counter - The subword shift and complements binary counter perforins three functions.
a. It counts the number of readout shift pulses to shift the subwords into the readout section of the shift register and gives a 16 -count output to turn off the readout zignal generator.
b. It counts the complement of the binary subword in the readout section of the shift register up to 0 for the binary-to-decimal conversion.
c. It gives a print command 10 milliseconds after the binary-todecimal conversion has been performed.
Tha subword shatt counter corsists of an AND gate that is turned on by the counter set circuit and turned off by the 0 -set pulse in the control circuit. This AND gate gives a 16 -count output signal when 16 pulses have entered the subword shift counter from the readout

drivers. To shift the proper number of bits of the subword into the shift register readout section, the subword shift counter is preset to a number so that when the number of pulses equal to the number of bits in the subword has entered the counter, there will be a 16 -count output. For example, to shift a 6 -bit word into the readout section, the subword shift counter is preset to 10 , so that the additional six shift pulses will produce the 16 -count output.

The binary-to-decimal conversion is performed by 0 -setting the subword shift and complements counter and then inserting the complement of the subword stored in the shift register readout section. Pulses from the ratio ring counter increase the complements counter to all 0 's. This counter now generates a $10-$ millisecond pulse, the trailing edge of which gives the PRINT command. The number of pulses required to increase the complements counter to all 0 's is one more than the decimal value of the binary number stored in the shift register readout section. These pulses are coanted in the output ring ccunter. To prevent the decimal number from always being greater by 1 , an extra pulse from the complements count oscillator not counted on the output ring counter is put into the complements counter at the beginning of each binary to decimal conversion.
The PRINT command is achieved by a relay contact closure, the relay being activated by a driver amplifier operating on a signal from a PRINT COMMAND driver. The latter is 0 -set after each subword is processed. The 10 -millisecond delay after the comple= ments binary counter has gone to 0 is obtained by using a pulser to drive the print command flip-flops.
10. Complements Count Oscillator--The complements count oscillator provides the pulses used to set the complements binary counter to 0 in the binary-to-decimal conversion. It uses the trailing edge of the shift register readout reset pulse to trigger the $15-\mu \mathrm{sec}$ EXTRA pulse. The trailing edge of the EXTRA pulse turns on the oscillator after a $150-\mu \mathrm{sec}$ delay.
The complements count oscillator consists of two pulser boards connected as a $25-\mathrm{ke}$ oscillator, a switching circuit consisting of a flip-flop and logic boards, and a driver output stage.
11. Ratio Ring Counter-- The ratio ring counter provides for various scale factors between 1 and 5 in the binary-to-decimal conversion. This is accomplished by dividing the input pulses by any factor from 1 to 5 for either or both of its outputs, depending on its programming from the subword ring counter.
One of the outputs goes to the complements binary counter, the other to the output ring counter.
The ratio ring counter consists of two scale-of-5 ring counters and associated logic circuits. The input pulses come from the complements count oscillator.
12. Counter Set Circuit-- The counter set circuit is used to preset the subword shift and complements binary counter for shifting the subword into the readout section of the shift register. The counter set circuit is programmed by the output of the subward ring counter. Each time a different subword is to be processed, one of the flip-flops in the subword ring counter goes to 0 . Fifteen usec later the next flip-flop goes to 1 . The 15 - $\mu$ sec period during which all the flip-flops of the subword ring counter are in the 0 state permits a definite change of state to be noted by the inputlogic circuits of the counter set circuit. At the end of the $15-\mu s e c$ period, the desired number is present in the subword shift counter, and an output pulse turns on the readout signal generatox.
The counter set circuit consists of four logic OR gates, four pulsers on the output, and an OR gate to form the output pulse.
13. Readout Signal Generator-- The readout signal generator provides the pulses that shift the subword into the readout section of the shift register. It is gated on by the output pulse from the counter set circuit and gated off in the 16 -count output of the subword shift counter. The readout signal generator consists of two pulsers connected as a $20-k c$ oscillator and a switching circuit composed of a flip-ilop and logic board.
14. Readout Drivers--The six readout driver amplifiers provide a high-current clock pulse used to shift the subwords into the readout section of the shift register. Input to the drivers comes from the readout signal generator. The outputs of the readout drivers go to the shift register clock inputs and the subword shift counter.
15. Frequency l's Complement Gray-to-Binary Converter--The gray-to-binary converter transforms the complementary gray-coded channel information into binary form as the channel information is shifted into the readout section of the shift register. The converter is normally inhibited by a 10 -volt signal from the subword ring counter until this channel information is ready to be shifted into the readout section. The gray-to-binary converter consists of logic circuits that compare the most significant bits with successive bits to perform the gray-to-binary conversion.
16. Test-Word Generator-- The test-word generator is capable of producing three types of words-alternate $l^{\prime} s$ and 0 's, all 0 's, or all l's. These words simulate the 3 -level return-to-zero input from the tape for testing of the data handler.
4. 19.2 Sequence of Operations
4. 19. 2. 1 Process of Typic: Word. Figure 4-22 shows the timing diagram for processing a typical word. In the following description, a number in

brackets [1], refers to lines on the timing diagram and a number in acircle (1) refers to the data handler circuits in Figure 4-21. Data processing is described in the following steps.

1. At the end of the previous word process, all circuits have been initially reset (1) [4].
2. A 3-level $\pm 6$ volt return-to-zero $9-k c$ word $[6]$ enters the data handler via the control circuits (1) then it goes to the input and parity check (2).
3. In the input and parity check, the word is:
a. Converted to a 2 -level binary signal with 1 's and 0 's separated out of the word
b. The 1 's and 0 's are combined in a single line to form read-in unidirectional clock pulses [8].
c. The number of l's in the word is counted by the parity check.
4. The read-in clock pulses [8] shift the 1 's and 0 's along the shift register (5) via the read-in drivers (3). The read-in clock pulses [8] are counted in the output ring counter (4) [20].
5. After 40 hits have entered the shift register (5), the output ring counter (4) gives a Tape Stop Count signal [2] ( -10 to 0 volts, $80-\mu \mathrm{sec}$ pulse), the leading edge of which gives the tape a command to stop [22]. As the tape coasts to a stop, the remaining bits enter the shift register.
6. Five seconds after the initial reset pulse, the timing circuit (6) gives its first pulse [9]. The timing pulses are $15-\mu s e c$ wide and 0 to -10 volts in amplitude. There is an $0.8-s e c o n d$ interval between successive timing pulses.
7. The first fiming pulse 1 sets flip-flop 1 of the subword ring counter (7) [10].
8. Ten milliseconds after flip-flop 1 has been l-set, a print command is issued 16 , and the number of bits shifted into the shift register 5 as recorded on the output ring cqunter (4) [20] is printed by the Hewlett-Packard digital recurder (8).
9. The second timing pulse (9) 0 -sets flip-flop 1 and 2 -sets flip-flop 2 (7)
10. As flip-flop 2 is a 1 -set, it triggers the reset pulse (1) [5] and programs the ratio ring counter (11) for a $1: 1$ count output.
11. The trailing edge of the reset pulse (1) [5] triggers the complements read-in pulse [17], which reads the complement of the time information (located in the shift register readout section (5)) into the subword shift and complements binary counter (9).
12. The trailing edge of the complements read-in pulse [17] after a $30-\mu \mathrm{sec}$ delay, triggers the shift register readout reset pulse [18]. which 0 -sets the readout section (5).
13. The trailing edgepf the readout reset pulse [18] triggers the extra pulse [14) (9).
14. The trailing edge of the extra pulse [14], after a 150- $\mu \mathrm{sec}$ delay, turns on the complements counter oscillator (10) [12. The putput of this oscillator that is fed into the ratio ring counter (9) has programmed the ratio ring counter (11) to give a $1: 1$ count on its outputs--that is, one count in the subword shift and complements binary counter (9) [14] for one count in the output ring counter (4) [20].
15. The trailing edge of the last pulse required to count the complements binary counter (9) to 0 [14] turns off the complements count oscillator (10) [20], and after a 10 -millisecond delay it gives a print command [16].
16. The print command [16] causes the printer (8) to print the number stored in the output ring counter (4) [20].
17. The third timing pulse 0 -sets flip-flop 2 (7) [20]. Fifteen $\mu \mathrm{sec}$ after flip-flop 2 is 0 -set, flip-flop 3 (7) is l-set (10).
18. When flip-flop 3 (7) is 1 -set (10), the ratio ring counter (11) is programmed to give a $2: 5$ count on its output--that is, two counts in the complements binary counter (9) [14] foi sive counts in the output ring counter (4) [20]. At the same time the subword shift counter is preset (12) to 7 .
19. The counter set circuit (12) also gives a $15-\mu \mathrm{sec}$ pulse [12], the trailing edge of which turns on the readout signal generator (13) $[13]$.
20. The readout signal generator (13) shifts the nine bits of PRF-2 information into the shift register readout section (5) via the readout drivers [i4]. The output of the readout drivers [14] is also fed into the subword shift counter (9) [14]. When nine pulses have been fed inte the subword shift counter, the counter gives a 16-count output (9) [15].
21. The leading edge of the 16 -count output (9) [15] turns off the readout signal generator (13), and the trailing edge triggers the reset pulse (1) [5].
22. The trailing edge of the reset pulse [5] initiates the complements read-in pulse [17] which reads the complement of the binary word in the shift register readout section (5) into the complements binary counter (9).

23. After a $30-\mu \sec$ delay, the trailing edge of the reset pulse [5] triggers the shift :egister readout reset pulse [18], which in turn 0 -sets the shift register readout (5).
24. The trailing edge of the shift register readout reset [18] triggers the EXTRA pulse into the complements binary counter (9) [14].
25. After a $150-\mu s e c$ delay, the trailing edge of the EXTRA pulse turns on the complements counter oscillator (10) [19], the output of which goes to the ratio ring counter (1) and then to the output ring counter (4) [20] and the complements binary counter (9) [14].
26. When the complements binary counter (9) [14] has been counted to all 0's, the complements count oscillator (10) [19] is turned off, and after a 10 -millisecond delay a print command (9) [16] is issued. The counts registered in the output ring counter (4) are printed (8).
27. The data processing cycle is repetitive for the remaining parts of the word. The only variation is the number preset in the subword shift counter (9) and the ratio programmed on the ratio ring counter (11) (1:2 for pulse-width, 2:5 for PRF-2, 1:1 for all other parts of the word).
28. When the last subword (channel) has been processed and printed, the timing pulse (6) [9] 0-sets the last flip-flop in the subword ring counter (7) [10].
29. When this flip-flop (7) [10] is 0-set, it triggers the initial reset pulse (1) [4]. The trailing edge of the initial rese: pulse (1) [4] triggers the tape command (1) [22], and the whole process begins again on the next word read in from the tape.
30. The data hander continues to process the words on the tape in stop-start operation until a signal from a variable time delay preset at the beginning of the tape readout stops the data handling process.
4.19.2.2 Self-Test Mode. In the self-test mode of operation, the word process is the same as that of a typical word except that the 68 -count signal [23] from the output ring counter (4) turns off the test-word generator (16).

Processing the First Word-- Figure $4-23$ is the timing diagram for the processing of the first word. The data handler is normally in the self-test mode of operation. To begin processing words from the tape, signal l from the master control unit [2] to the control circuits (1) turns off the testword generator (16) and connects the output of the tape to the input and parity check (2). Signal lfom the master control unit [2] holds the data

handler in the initial reset condition [4], which permits the word from the tape to pass through the shift register (5) without being processed. When the forward end of the tape is reached, the first word on the tape the all zero word) remains in the shift register (5) wignal 2 from the master cone trol unit [3] releases the initial reset and permits thin word to be procemed. From this point on, the all zero wordis processed in the same manner as the typical word.

## 4. 20 JUNCTION BOX

The junction box serves as an access facility to the various interconnecting cables between the checkout equipment and the payload equipment. All power and signal cables except for RF feeds are thus made acceasible for measurement and monitoring when such is necesaary. A number of test points are provided in addition to tie points thereby allowing acces tomany signal terminals without removing the junction box.


Ltr: $D D C(D D C=1 R)$. Jul St, Claxification oi Limitcc Acceme Ropor:m
3d Ind $(S S i S)$

$$
21 \cos ^{2}
$$

Hq SSD, LA AFS, Air Force Unit Pow OiAco, Lo Angoleb, Calif 90045
TO: HG DDC (DDC-IRA), Camoron Station, Aduxandria, Vixginia 22324

1. Tho ttached documonte have buen reviawod and datermince not to contain any intormation falling within the purvicw of DOD Disective \$5200.13 a implamented by AFR 205-23 and AES 80-29, paragraph 8a(7).
2. Special Acceme Recuizoment do mu. upply to documenta proparcd prioz to 1 Augut 1962; however, if these documents aro upritted or if the informutioni usedin reiation to ensitive pace programa mince 1 August 1962 tho pocial recuirement $\begin{gathered}\text { teconemary. }\end{gathered}$
3. Thi indci ment contaln no ciasmiliad infoxmation.

FOR THE COMMANDER

## (aind $1 /$ PR

KENNETHE LGGRAM
7 Atch
Major. USAE $\mathrm{n} / \mathrm{c}$
Chiof, Sytems Securizy
and Clateification Divietion



[^0]:    * To be determined.

[^1]:    * No filters used in this channel. Values shown are for input signal of -40 dbm .

[^2]:    2-73

    LOCKHEED AIRCRAFT CORPORATION
    

[^3]:    I aunno

[^4]:    * The PRF anc PW are selected to test the counters in the data handler.
    ** If evaluation of performance of the probability of occurrence effect is desired, scan 1 shall be repeated as many times as necessary.

[^5]:    * The S/I ratio needed for an intercept varies with frequency, power level, and $P W$.

[^6]:    4-53

